Skip to main content
Log in

Filtration Simplification for Persistent Homology via Edge Contraction

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Persistent homology is a popular data analysis technique that is used to capture the changing homology of an indexed sequence of simplicial complexes. These changes are summarized in persistence diagrams. A natural problem is to contract edges in complexes in the initial sequence to obtain a sequence of simplified complexes while controlling the perturbation between the original and simplified persistence diagrams. This paper is an extended version of Dey and Slechta (in: Discrete geometry for computer imagery, Springer, New York, 2019), where we developed two contraction operators for the case where the initial sequence is a filtration. In addition to the content in the original version, this paper presents proofs relevant to the filtration case and develops contraction operators for towers and multiparameter filtrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Attali, D., Glisse, M., Morozov, D., Hornus, S., Lazarus, F.: Persistence-sensitive simplification of functions on surfaces in linear time. In: Workshop TopoInVis (2009) (to appear)

  2. Barmak, J.A., Minian, E.G.: Strong homotopy types, nerves and collapses. Discrete Comput. Geom. 47(2), 301–328 (2012)

    Article  MathSciNet  Google Scholar 

  3. Boissonnat, J., Pritam, S., Pareek, D.: Strong collapse for persistence. In: 26th Annual European Symposium on Algorithms, ESA 2018, August 20–22, 2018, Helsinki, Finland, pp. 67:1–67:13 (2018)

  4. Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discrete Comput. Geom. 42(1), 71–93 (2009)

    Article  MathSciNet  Google Scholar 

  5. Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L.J., Oudot, S.Y.: Proximity of persistence modules and their diagrams. In: Proceedings of the Twenty-fifth Annual Symposium on Computational Geometry, SCG ’09, pp. 237–246. ACM, New York (2009)

  6. Chazal, F., de Silva, V., Glisse, M., Oudot, S.: The structure and stability of persistence modules. arXiv e-prints (2012)

  7. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. In: Proceedings of the Twenty-First Annual Symposium on Computational Geometry, SCG ’05, pp. 263–271 (2005)

  8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  9. Dey, T.K., Edelsbrunner, H., Guha, S., Nekhayev, D.V.: Topology preserving edge contraction. Publ. Inst. Math. (Beograd) (NS) 66(80), 23–45 (1999)

    MathSciNet  Google Scholar 

  10. Dey, T.K., Fan, F., Wang, Y.: Computing topological persistence for simplicial maps. In: Proceedings of the Thirtieth Annual Symposium on Computational Geometry, SOCG’14, pp. 345:345–345:354. ACM, New York (2014)

  11. Dey, T.K., Hirani, A.N., Krishnamoorthy, B., Smith, G.: Edge contractions and simplicial homology. arXiv e-prints arXiv:1304.0664 (2013)

  12. Dey, T.K., Shi, D., Wang, Y.: Simba: an efficient tool for approximating rips-filtration persistence via simplicial batch-collapse. In: 24th Annual European Symposium on Algorithms, ESA 2016, August 22–24, Aarhus, Denmark, pp. 35:1–35:16 (2016)

  13. Dey, T.K., Slechta, R.: Edge contraction in persistence-generated discrete morse vector fields. Comput. Gr. 74, 33–43 (2018)

    Article  Google Scholar 

  14. Dey, T.K., Slechta, R.: Filtration simplification for persistent homology via edge contraction. In: Discrete Geometry for Computer Imagery, pp. 89–100. Springer, New York (2019)

  15. Edelsbrunner, L., Zomorodian.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)

  16. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society, New York (2010)

    MATH  Google Scholar 

  17. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’93, pp. 19–26. ACM, New York (1993)

  18. Iuricich, F., De Floriani, L.: Hierarchical forman triangulation: a multiscale model for scalar field analysis. Comput. Gr. 66, 113–123 (2017)

    Article  Google Scholar 

  19. Kerber, M., Morozov, D., Nigmetov, A.: Geometry helps to compare persistence diagrams. J. Exp. Algorithmics 22, 1.4:1–1.4:20 (2017)

    Article  MathSciNet  Google Scholar 

  20. Kerber, M., Schreiber, H.: Barcodes of towers and a streaming algorithm for persistent homology. arXiv e-prints arXiv:1701.02208 (2017)

  21. Lesnick, M.: The theory of the interleaving distance on multidimensional persistence modules. Found. Comput. Math. 15(3), 613–650 (2015)

    Article  MathSciNet  Google Scholar 

  22. Lindstrom, P., Turk, G.: Fast and memory efficient polygonal simplification. In: Proceedings Visualization ’98 (Cat. No. 98CB36276), pp. 279–286 (1998)

  23. Oudot, S.Y.: Persistence Theory: From Quiver Representations to Data Analysis. Mathematical Surveys and Monographs, vol. 209. American Mathematical Society, New York (2015)

    Book  Google Scholar 

  24. Robertson, N., Seymour, P.: Graph minors. I. Excluding a forest. J. Comb. Theory Ser. B 35(1), 39–61 (1983)

    Article  MathSciNet  Google Scholar 

  25. Robertson, N., Seymour, P.: Graph minors. XX. Wagner’s conjecture. J. Comb. Theory Ser. B 92(2), 325–357 (2004)

    Article  MathSciNet  Google Scholar 

  26. Source code. https://github.com/rslechta/pers-contract. Accessed 15 Mar 2019

Download references

Acknowledgements

The authors would like to thank the National Elevation Dataset for their terrain data, the Aim@Shape repository for the models, and the Hera project for their bottleneck distance code [19]. In addition, the authors are grateful for the comments of the anonymous reviewers. This work was supported by NSF grants CCF-1740761, DMS-1547357, and CCF-1839252.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Slechta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, T.K., Slechta, R. Filtration Simplification for Persistent Homology via Edge Contraction. J Math Imaging Vis 62, 704–717 (2020). https://doi.org/10.1007/s10851-020-00956-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-020-00956-7

Keywords

Navigation