Skip to main content
Log in

Tomographic Reconstruction of 3D Objects Using Marked Point Process Framework

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

For reconstructing sparse volumes of 3D objects from projection images taken from different viewing directions, several volumetric reconstruction techniques are available. Most popular volume reconstruction methods are algebraic algorithms (e.g. the multiplicative algebraic reconstruction technique, MART). These methods which belong to voxel-oriented class allow volume to be reconstructed by computing each voxel intensity. A new class of tomographic reconstruction methods, called “object-oriented” approach, has recently emerged and was used in the Tomographic Particle Image Velocimetry technique (Tomo-PIV). In this paper, we propose an object-oriented approach, called Iterative Object Detection—Object Volume Reconstruction based on Marked Point Process (IOD-OVRMPP), to reconstruct the volume of 3D objects from projection images of 2D objects. Our approach allows the problem to be solved in a parsimonious way by minimizing an energy function based on a least squares criterion. Each object belonging to 2D or 3D space is identified by its continuous position and a set of features (marks). In order to optimize the population of objects, we use a simulated annealing algorithm which provides a “Maximum A Posteriori” estimation. To test our approach, we apply it to the field of Tomo-PIV where the volume reconstruction process is one of the most important steps in the analysis of volumetric flow. Finally, using synthetic data, we show that the proposed approach is able to reconstruct densely seeded flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. If the mathematical notations of Sect. 2 which are given for a generic population of objects are considered, \(\xi \) belongs to a population of 3D objects (see Sect. 2.2.3) and \(\xi = y_i\) for example. Then, we have the following correspondence: \(k_i = {\mathbf {X}}_0\), \(r_i = R \) and \(E_i = E_0\).

  2. If the mathematical notations of Sect. 2 which are given for a generic population of objects are considered, \(\zeta \) belongs to a population of 2D objects (see Sect. 2.4.1) and \(\zeta = y_i\) for example. Then, we have the following correspondence: \(k_i = {\mathbf {x}}_0\), \(r_i = r \) and \(E_i = I_0\).

References

  1. AFDAR: Advanced Flow Diagnostics for Aeronautical Research. www.afdar.eu

  2. Alata, O., Burg, S., Dupas, A.: Grouping/degrouping point process, a point process driven by geometrical and topological properties of a partition in regions. Comput. Vis. Image Underst. 115, 1324–1339 (2011)

    Article  Google Scholar 

  3. Andersen, A.H., Kak, A.C.: Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithms. Ultrason. Imaging 6(1), 81–94 (1984)

    Article  Google Scholar 

  4. Atkinson, C.H., Soria, J.: An efficient simultaneous reconstruction technique for tomographic particle image velocimetry. Exp. Fluids 47(4–5), 553–568 (2009). https://doi.org/10.1007/s00348-009-0728-0

    Article  Google Scholar 

  5. Azencott, R.: Simulated Annealing: Parallelization Techniques. Springer, New York (1992)

    MATH  Google Scholar 

  6. Baddeley, A.J., Lieshout, M.N.M.V.: Stochastic geometry models in high-level vision. J. Appl. Stat. 20(5–6), 231–256 (1993). https://doi.org/10.1080/02664769300000065

    Article  Google Scholar 

  7. Belden, J., Truscott, T.T., Axiak, M.C., Techet, A.H.: Three-dimensional synthetic aperture particle image velocimetry. Meas. Sci. Technol. 21(12), 125,403 (2010)

    Article  Google Scholar 

  8. Ben-Salah, R.: Élaboration d’une méthode tomographique de reconstruction 3D en vélocimétrie par image de particules basée sur les processus ponctuels marqués. Ph.D. thesis, Université de Poitiers, Faculté des Sciences Fondamentales et Appliquées, Poitiers (2015)

  9. Ben-Salah, R., Alata, O., Thomas, L., Tremblais, B., David, L.: 3D particle volume tomographic reconstruction based on marked point process: application to tomo-piv in fluid mechanics. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 8153–8157. IEEE (2014)

  10. Ben-Salah, R., Alata, O., Tremblais, B., Thomas, L., David, L.: Particle volume reconstruction based on a marked point process and application to tomo-piv. In: European signal processing conference (EUSIPCO 2015). Nice, France (2015)

  11. Ben-Salah, R., Thomas, L., Tremblais, B., Alata, O., David, L.: Reconstruction de volumes de particules par processus ponctuels marqués. In: CFTL2016, 15ème Congrés Francophone de Technique Laser pour la Mécanique des Fluides. Toulouse, France (2016). https://hal.archives-ouvertes.fr/hal-01368625

  12. Benson, T.M., Gregor, J.: Modified simultaneous iterative reconstruction technique for faster parallel computation. In: Nuclear science symposium conference record, IEEE, vol. 5, pp. 2715–2718. IEEE (2005)

  13. Byrne, C.: Block-iterative algorithms. Int. Trans. Oper. Res. 16(4), 427–463 (2009). https://doi.org/10.1111/j.1475-3995.2008.00683.x

    Article  MathSciNet  MATH  Google Scholar 

  14. Censor, Y.: Finite series-expansion reconstruction methods. Proc. IEEE 71(3), 409–419 (1983)

    Article  Google Scholar 

  15. Champagnat, F., Cornic, P., Cheminet, A., Leclaire, B., Le-Besnerais, G., Plyer, A.: Tomographic piv: particles versus blobs. Meas. Sci. Technol. 25(8), 084,002 (2014)

    Article  Google Scholar 

  16. Chatelain, F., Costard, A., Michel, O.J.J.: A bayesian marked point process for object detection. Application to muse hyperspectral data. In: IEEE ICASSP 2011, pp. 3628–3631 (2011). https://doi.org/10.1109/ICASSP.2011.5947136

  17. Chýlek, P., Zhan, J.: Absorption and scattering of light by small particles: the interference structure. Appl. Opt. 29(28), 3984–3984 (1990). https://doi.org/10.1364/AO.29.003984

    Article  Google Scholar 

  18. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods, vol. 1, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  19. Darroch, J.N., Ratcliff, D.: Generalized iterative scaling for log-linear models. Ann. Math. Stat. 43(3), 1470–1480 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dean, V.: Limited-data computed tomography algorithms for the physical sciences. Appl. Opt. 32(20), 3736–3754 (1993). https://doi.org/10.1364/AO.32.003736

    Article  Google Scholar 

  21. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithms. J. R. Stat. Soc. Ser. B Methodol. 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  22. Descamps, S., Descombes, X., Bechet, A., Zerubia, J.: Automatic flamingo detection using a multiple birth and death process. In: IEEE ICASSP , vol. 2008, pp. 1113–1116 (2008). https://doi.org/10.1109/ICASSP.2008.4517809

  23. Discetti, S., Astarita, T.: Fast multi-resolution 3D PIV with direct correlations and sparse arrays. In: Forum on Recent Developments in Volume Reconstruction Techniques Applied to 3D Fluid and Solid Mechanics. Poitiers, France (2011)

  24. Donoho, D.L., Tanner, J.: Counting the faces of randomly-projected hypercubes and orthants, with applications. Discrete Comput. Geom. 43(3), 522–541 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Earl, T., Ben-Salah, R., Thomas, L., Tremblais, B., Cochard, S., David, L.: Volumetric measurements by tomographic piv of an open channel flow behind a turbulent grid. In: 18th Australasian fluid mechanics conference, pp. 978–1 (2013)

  26. Elsinga, G.E., Scarano, F., Wieneke, B.: Tomographic particle image velocimetry. Exp. Fluids 41, 933–947 (2006)

    Article  Google Scholar 

  27. Gamboa, F.: Méthode du maximum d’entropie sur la moyenne et applications. Ph.D. thesis, Université de Paris-Sud, Orsay (1989)

  28. Geman, S., Geman, D.: Stochastic relaxation: gibbs distributions and the bayesian restoration of images. IEEE Trans. PAMI 9, 721–741 (1984)

    Article  MATH  Google Scholar 

  29. Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J. Theor. Biol. 29(3), 471–481 (1970). https://doi.org/10.1016/0022-5193(70)90109-8

    Article  Google Scholar 

  30. Green, P.J.: Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82(4), 711–732 (1995). https://doi.org/10.1093/biomet/82.4.711

    Article  MathSciNet  MATH  Google Scholar 

  31. Hadamard, J.: Le probleme de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, vol. 193. Paris, Hermann et Cie, Editeurs (1932)

  32. Herman, G.T., Arnold, L.: Iterative reconstruction algorithms. Comput. Biol. MA 6(4), 273–294 (1976)

    Article  Google Scholar 

  33. Herzet, C., Drémeau, A.: Bayesian pursuit algorithms. In: Proceedings of European signal processing conference (EUSIPCO). Aalborg, Denmark (2010)

  34. Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13(4), 601–609 (1994)

    Article  Google Scholar 

  35. Kaczmarz, S.: Angenäherte auflösung von systemen linearer gleichungen. Bull. Int. l’Acad. Pol. Sci. Lett. 35, 355–357 (1937)

    MATH  Google Scholar 

  36. Lascaux, P., Théodor, R.: Analyse Numérique Matricielle Appliquée à l’art de l’ingénieur, Tome 2: Méthodes Itératives, vol. 2. Masson, Paris (2004)

    MATH  Google Scholar 

  37. Lecordier, B., Westerweel, J.: The EUROPIV synthetic image generator (S.I.G.). In: Stanislas, M., Westerweel, J., Kompenhans, J. (eds.) Particle Image Velocimetry: Recent Improvements. Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-642-18795-7_11

  38. Lewitt, R.M.: Reconstruction algorithms: transform methods. Proc. IEEE 71(3), 390–408 (1983)

    Article  Google Scholar 

  39. Lu, W., Yin, F.F.: Adaptive algebraic reconstruction technique. Med. Phys. 31(12), 3222–3230 (2004)

    Article  Google Scholar 

  40. Lynch, K.P., Scarano, F.: An efficient and accurate approach to MTE-MART for time-resolved tomographic PIV. Exp. Fluids 56(3), 1–16 (2015). https://doi.org/10.1007/s00348-015-1934-6

    Article  Google Scholar 

  41. Maas, H.G., Westfeld, P., Putze, T., Bøtkjær, N., Kitzhofer, J., Brücker, C.: Photogrammetric techniques in multi-camera tomographic piv. In: Proceedings of the 8th international symposium on particle image velocimetry, pp. 25–28 (2009)

  42. Mallet, C., Lafarge, F., Roux, M.J., Soergel, U., Bretar, F., Heipke, C.: A marked point process for modeling lidar waveforms. IEEE Trans. Image Process. 19(12), 3204–3221 (2010). https://doi.org/10.1109/TIP.2010.2052825

    Article  MathSciNet  MATH  Google Scholar 

  43. Minerbo, G.: MENT: a maximum entropy algorithm for reconstructing a source from projection data. Comput. Graph. Image Process. 10(1), 48–68 (1979)

    Article  Google Scholar 

  44. Ortner, M., Descombes, X., Zerubia, J.: Building outline extraction from digital elevation models using marked point processes. Int. J. Comput. Vis. 72(2), 107–132 (2007). https://doi.org/10.1007/s11263-005-5033-7

    Article  Google Scholar 

  45. Perrin, G., Descombes, X., Zerubia, J.: Adaptive simulated annealing for energy minimization problem in a marked point process application. In: Energy minimization methods in computer vision and pattern recognition, LNCS, vol. 3757, pp. 3–17. Springer, Berlin(2005). https://doi.org/10.1007/11585978_1

  46. Perrin, G., Descombes, X., Zerubia, J.: 2D and 3D vegetation resource parameters assessment using marked point processes. In: 18th international conference on pattern recognition, 2006. ICPR 2006., vol. 1, pp. 1–4 (2006). https://doi.org/10.1109/ICPR.2006.20

  47. Petra, S., Schröder, A., Schnörr, C.: 3D tomography from few projections in experimental fluid dynamics. In: Nitsche, W., Dobriloff, C. (eds.) Imaging Measurement Methods for Flow Analysis, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 106, pp. 63–72. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-01106-1_7

  48. Peyrin, F., Garnero, L., Magnin, I.: Introduction à l’imagerie tomographique 2D et 3D reposant sur une propagation en ligne droite. cas de la tomographie par rayon X, par émission et par ultrasons. Traitement du Signal 13(4), 381–413 (1996)

    MATH  Google Scholar 

  49. Preston, C.J.: Spatial birth-and-death processes. Bull. Int. Stat. Inst. 46, 371–391 (1977)

    MathSciNet  Google Scholar 

  50. Rietch, E.: The maximum entropy approach to inverse problems. J. Geophys. 42, 489–506 (1977)

    Google Scholar 

  51. Schanz, D., Schröder, A., Gesemann, S., Michaelis, D., Wieneke, B.: ‘Shake The Box’: a highly efficient and accurate tomographic particle tracking velocimetry (TOMO-PTV) method using prediction of particle positions. In: PIV13; 10th International Symposium on Particle Image Velocimetry, Delft, The Netherlands (2013)

  52. Schmidlin, P.: Iterative separation of sections in tomographic scintigrams. Nuclear-Medizin 11(1), 1 (1972)

    Google Scholar 

  53. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1(2), 113–122 (1982)

    Article  Google Scholar 

  54. Stoica, R., Descombes, X., Zerubia, J.: A gibbs point process for road extraction from remotely sensed images. Int. J. Comput. Vis. 57(2), 121–136 (2004). https://doi.org/10.1023/B:VISI.0000013086.45688.5d

    Article  Google Scholar 

  55. Stoica, R., Martinez, V., Mateu, J., Saar, E.: Detection of cosmic filaments using the candy model. Astron. Astrophys. 434, 423–432 (2005). https://doi.org/10.1051/0004-6361:20042409

    Article  Google Scholar 

  56. Sun, K., Sang, N., Zhang, T.: Marked point process for vascular tree extraction on angiogram. In: Energy Minimization Methods in Computer Vision and Pattern Recognition, LNCS, vol. 4679, pp. 467–478. Springer, Berlin, (2007). https://doi.org/10.1007/978-3-540-74198-5_36

  57. Thomas, L., Tremblais, B., David, L.: Optimization of the volume reconstruction for classical tomo-piv algorithms (mart, bimart and smart): synthetic and experimental studies. Meas. Sci. Technol. 25(3), 035,303 (2014)

    Article  Google Scholar 

  58. Tournaire, O., Paparoditis, N., Lafarge, F.: Rectangular road marking detection with marked point processes. Proc. Conf. Photogramm. Image Anal. 36(3/W49A), 149–154 (2007)

    Google Scholar 

  59. Tremblais, B., David, L., Arrivault, D., Dombre, J., Chatellier, L., Thomas, L.: Slip: simple library for image processing (version 1.0). http://sliplib.free.fr (2010)

  60. Van-Lieshout, M.N.M.: Markov Point Processes and Their Applications. Imperial College Press/World Scientific Publishing, London (2000)

    Book  MATH  Google Scholar 

  61. Weina, G., Collins, R.: Marked point processes for crowd counting. In: IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009, pp. 2913–2920 (2009). https://doi.org/10.1109/CVPR.2009.5206621

  62. Wieneke, B.: Volume self-calibration for 3D particle image velocimetry. Exp. Fluids 45(4), 549–556 (2008)

    Article  Google Scholar 

  63. Wieneke, B.: Iterative reconstruction of volumetric particle distribution. Meas. Sci. Technol. 24(2), 024,008 (2013)

    Article  Google Scholar 

  64. Worth, N.A., Nickels, T.B.: Acceleration of tomo-piv by estimating the initial volume intensity distribution. Exp. Fluids 45(5), 847–856 (2008). https://doi.org/10.1007/s00348-008-0504-6

    Article  Google Scholar 

  65. Ziskin, I.B., Adrian, R.J., Prestridge, K.: Volume segmentation tomographic particle image velocimetry. In: 9th international symposium on particle image velocimetry. Kobe, Japan (2011)

Download references

Acknowledgements

The current work has been conducted as part of the AFDAR Project, Advanced Flow Diagnostics for Aeronautical research, funded by the European Commission Program FP7, Grant No. 265695 and also the FEDER Project No. 34754.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Alata.

Appendix A: Data-Driven Energy Calculation Details

Appendix A: Data-Driven Energy Calculation Details

If the square of Eq. (4) is developed, the following result is obtained:

$$\begin{aligned} \hbox {MSE}(y \left| o \right. )= \sum _{s \in S} o_{s}^2 + p_{s} ^2 - 2 o_{s} p_{s} \end{aligned}$$
(32)

The first term of the addition in Eq. (32) is constant. The data-driven energy defining the likelihood between the projection of a configuration y and the observed data \(o = \left\{ o_s\right\} _{\left\{ s \in S\right\} }\) can be written:

$$\begin{aligned} U_{\text {ext}}(y) = \sum _{s \in S} p_{s}^2 - 2 o_{s} p_{s} \end{aligned}$$
(33)

\(U_{\text {ext}}\) defines the quality of a configuration compared to the data: the closer the projection of a population of objects is to the reference image, the lower its energy value. We show below that this energy can be written as a sum of first-order and second-order neighborhood energy terms.

Using Eqs. (5), (33) can be written:

$$\begin{aligned}&\begin{aligned} U_{\text {ext}}(y)&= \sum _{s \in S} \left[ \left( \sum _{y_j , y_j \rightarrow s} p_{y_j \rightarrow s} \right) ^2 \right. \\&\quad \left. -\, 2 \ o_{s} \ \left( \sum _{y_j , y_j \rightarrow s} p_{y_j \rightarrow s} \right) \right] \\ \end{aligned} \end{aligned}$$
(34)
$$\begin{aligned}&\begin{aligned} U_{\text {ext}}(y)&= \sum _{s \in S} \left[ \left( \sum _{y_j , y_j \rightarrow s} p_{y_j \rightarrow s} ^2 \right. \right. \\&\qquad \left. +\, 2 \sum _{ \begin{array}{c} y_j , y_k , j < k \\ y_j \rightarrow s , y_k \rightarrow s \end{array}} p_{y_j \rightarrow s} \ p_{y_k \rightarrow s} \right) \\&\qquad \left. - \,2 \ o_{s} \ \left( \sum _{y_j , y_j \rightarrow s} p_{y_j \rightarrow s} \right) \right] \end{aligned} \end{aligned}$$
(35)
$$\begin{aligned}&\begin{aligned} U_{\text {ext}}(y)&= \sum _{s \in S} \sum _{y_j , y_j \rightarrow s} p_{y_j \rightarrow s} \left( p_{y_j \rightarrow s} - 2 \ o_s \right) \\&\qquad +\, \sum _{s \in S} 2 \sum _{ \begin{array}{c} y_j , y_k , j < k \\ y_j \rightarrow s , y_k \rightarrow s \end{array}} p_{y_j \rightarrow s} \ p_{y_k \rightarrow s} \end{aligned} \end{aligned}$$
(36)
$$ \begin{aligned}&\begin{aligned} U_{\text {ext}}(y)&= \underbrace{ \sum _{y_j \in y} \sum _{\begin{array}{c} s \in S \\ y_j \rightarrow s \end{array}} p_{y_j \rightarrow s} \left( p_{y_j \rightarrow s} - 2 \ o_s \right) }_{first-order\ term}\\&\qquad +\, \underbrace{\sum _{\begin{array}{c} y_j , y_k , j<k \\ y_j \overset{o}{\sim } y_k \end{array}} \sum _{\begin{array}{c} s \in S \\ y_j \rightarrow s \ \& \ y_k \rightarrow s \end{array}} 2 p_{y_j \rightarrow s} \ p_{y_k \rightarrow s}}_{second-order\ term} \end{aligned} \end{aligned}$$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Salah, R., Alata, O., Tremblais, B. et al. Tomographic Reconstruction of 3D Objects Using Marked Point Process Framework. J Math Imaging Vis 60, 1132–1149 (2018). https://doi.org/10.1007/s10851-018-0800-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-018-0800-6

Keywords

Navigation