Skip to main content
Log in

Cracks Detection Using Iterative Phase Congruency

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Extracting linear (planar) structures from digital images is often needed in computed tomography (CT) applications such as cracks detection for industrial objects. The difficulties of this task lie in the fact that usually strong and very weak structures coexist in reconstructed CT images. Strong noise and artifacts make the problem even more challenging. In this paper, an efficient approach based on the concept of phase congruency (PC) is proposed for linear as well as planar structures extraction. The most innovative part of our approach is the new concept of iterative PC, which could be thought of as being the extension of the classical PC. We tested the proposed approach on a three-dimensional volume image reconstructed by our laboratory for cracks detection. Experiments show that, for cylindrical objects damaged by radial distributed cracks, our approach outperforms other popular approaches in terms of accuracy or efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv. (CSUR) 36(2), 81–121 (2004)

    Article  Google Scholar 

  2. Merveille, O., Talbot, H., Najman, L., Passat, N.: Curvilinear structure analysis by ranking the orientation responses of path operators. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2017)

  3. Wei, Q., Leblon, B., La Rocque, A.: On the use of X-ray computed tomography for determining wood properties: a review. Can. J. For. Res. 41(11), 2120–2140 (2011)

    Article  Google Scholar 

  4. Maret, D., Telmon, N., Peters, O.A., Lepage, B., Treil, J., Inglèse, J.M., Peyre, A., Kahn, J.L., Sixou, M.: Effect of voxel size on the accuracy of 3D reconstructions with cone beam CT. Dentomaxillofac. Radiol. 41(8), 649–655 (2012)

    Article  Google Scholar 

  5. Rose, S.D., Andersen, M.S., Sidky, E.Y., Pan, X.: TV-constrained incremental algorithms for low-intensity CT image reconstruction. In: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2015 IEEE, pp. 1–3. IEEE (2015)

  6. Herman, G.T.: Fundamentals of computerized tomography: image reconstruction from projections, vol. 29. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  7. Edward Boas, F., Fleischmann, D.: CT artifacts: causes and reduction techniques. Imag. Med. 4(2), 229–240 (2012)

    Article  Google Scholar 

  8. Huo, Q., Li, J., Yao, L.: Removing ring artefacts in CT images via unidirectional relative variation model. Electron. Lett. 52(22), 1838–1839 (2016)

    Article  Google Scholar 

  9. Jin, P., Bouman, C.A., Sauer, K.D.: A model-based image reconstruction algorithm with simultaneous beam hardening correction for X-ray CT. IEEE Trans. Comput. Imag. 1(3), 200–216 (2015)

    Article  MathSciNet  Google Scholar 

  10. Zhao, Y., Li, M.: Iterative beam hardening correction for multi-material objects. PloS ONE 10(12), e0144607 (2015)

    Article  Google Scholar 

  11. Li, M., Zhao, Y., Zhang, P.: Attenuator design method for dedicated whole-core CT. Opt. Express 24(20), 22749–22765 (2016)

    Article  Google Scholar 

  12. Vala, M.H.J., Baxi, A.: A review on Otsu image segmentation algorithm. Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 2(2), 387 (2013)

    Google Scholar 

  13. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 130–137. Springer (1998)

  14. Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model-based detection of tubular structures in 3D images. Comput. Vis. Image Underst. 80(2), 130–171 (2000)

    Article  MATH  Google Scholar 

  15. Bauer, C., Simpson, H.: Segmentation of 3D tubular tree structures in medical images. Ph.D. thesis, Graz University of Technology (2010)

  16. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vasilevskiy, A., Siddiqi, K.: Flux maximizing geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1565–1578 (2002)

    Article  MATH  Google Scholar 

  18. Descoteaux, M., Collins, L., Siddiqi, K.: A multi-scale geometric flow for segmenting vasculature in MRI. In: Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis, pp. 169–180. Springer (2004)

  19. Bankhead, P., Scholfield, C.N., McGeown, J.G., Curtis, T.M.: Fast retinal vessel detection and measurement using wavelets and edge location refinement. PloS ONE 7(3), e32435 (2012)

    Article  Google Scholar 

  20. Manniesing, R., Velthuis, B.K., Van Leeuwen, M.S., Van Der Schaaf, I.C., Van Laar, P.J., Niessen, W.J.: Level set based cerebral vasculature segmentation and diameter quantification in CT angiography. Med. Image Anal. 10(2), 200–214 (2006)

    Article  Google Scholar 

  21. Manniesing, R., Viergever, M.A., Niessen, W.J.: Vessel axis tracking using topology constrained surface evolution. IEEE Trans. Med. Imaging 26(3), 309–316 (2007)

    Article  Google Scholar 

  22. Franchini, E., Morigi, S., Sgallari, F.: Segmentation of 3D tubular structures by a PDE-based anisotropic diffusion model. In: Mathematical Methods for Curves and Surfaces, pp. 224–241 (2010)

  23. Zhao, Y., Rada, L., Chen, K., Harding, S.P.: Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans. Med. Imaging 34(9), 1797–1807 (2015)

    Article  Google Scholar 

  24. Wang, L., Zhang, H., He, K., Chang, Y., Yang, X.: Active contours driven by multi-feature Gaussian distribution fitting energy with application to vessel segmentation. PloS ONE 10(11), e0143105 (2015)

    Article  Google Scholar 

  25. Zhao, Y., Zhao, J., Yang, J., Liu, Y., Zhao, Y., Zheng, Y., Xia, Y., Wang, Y.: Saliency driven vasculature segmentation with infinite perimeter active contour model. Neurocomputing 259, 201–209 (2017)

  26. Chen, D., Cohen, L.D., Mirebeau, J.-M.: Vessel extraction using anisotropic minimal paths and path score. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 1570–1574. IEEE (2014)

  27. Chen, Y., Zhang, Y., Yang, J., Cao, Q., Yang, G., Chen, J., Shu, H., Luo, L., Coatrieux, J.-L., Feng, Q.: Curve-like structure extraction using minimal path propagation with backtracking. IEEE Trans. Image Process. 25(2), 988–1003 (2016)

    Article  MathSciNet  Google Scholar 

  28. Chen, D., Mirebeau, J.-M., Cohen, L.D.: Global Minimum for a Finsler elastica minimal path approach. Int. J. Comput. Vis. 122(3), 458–483 (2016)

    Article  MathSciNet  Google Scholar 

  29. Chen, D., Mirebeau, J.-M., Cohen, L.D.: essel tree extraction using radius-lifted keypoints searching scheme and anisotropic fast marching method. J. Algorithms Comput. Technol. 10(4), 224–234 (2016)

    Article  MathSciNet  Google Scholar 

  30. Becker, C., Rigamonti, R., Lepetit, V., Fua, P.: Supervised feature learning for curvilinear structure segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 526–533. Springer (2013)

  31. Zhu, C., Zou, B., Xiang, Y., Cui, J., Wu, H.: An improved retinal vessel segmentation method based on supervised learning. In: 2015 14th International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics), pp. 216–217. IEEE (2015)

  32. Roychowdhury, S., Koozekanani, D.D., Parhi, K.K.: Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE J. Biomed. Health Inform. 19(3), 1118–1128 (2015)

    Google Scholar 

  33. Li, Q., Feng, B., Xie, L.P., Liang, P., Zhang, H., Wang, T.: A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans. Med. Imaging 35(1), 109–118 (2016)

    Article  Google Scholar 

  34. Zhu, C., Zou, B., Xiang, Y., Cui, J., Hui, W.: An ensemble retinal vessel segmentation based on supervised learning in fundus images. Chin. J. Electron. 25(3), 503–511 (2016)

    Article  Google Scholar 

  35. Fu, H., Xu, Y., Wong, D.W.K., Liu, J.: Retinal vessel segmentation via deep learning network and fully-connected conditional random fields. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 698–701. IEEE (2016)

  36. Paweł, L., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35(11), 2369–2380 (2016)

    Article  Google Scholar 

  37. Orlando, J.I., Prokofyeva, E., Blaschko, M.B.: A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans. Biomed. Eng. 64(1), 16–27 (2017)

    Article  Google Scholar 

  38. Kovesi, P.: Image features from phase congruency. Videre J. Comput. Vis. Res. 1(3), 1–26 (1999)

    Google Scholar 

  39. Kovesi, P.: Matlab functions for computer vision and image analysis. School of Computer Science and Software Engineering, The University of Western Australia. http://www.csse.uwa.edu.au/pk/research/matlabfns (2004)

  40. Tagore, M.R.N, Kande, G.B., Rao, E.V.K., Rao, B.P.: Segmentation of retinal vasculature using phase congruency and hierarchical clustering. In: 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 361–366. IEEE (2013)

  41. Awan, R., Rajpoot, K.: Investigation of 3D and 4D feature extraction from echocardiography images using local phase based method. In: 2014 12th International Conference on Frontiers of Information Technology (FIT), pp. 251–256. IEEE (2014)

  42. Ahmed, M.I., Amin, M.A., Poon, B., Yan, H.: Retina based biometric authentication using phase congruency. Int. J. Mach. Learn. Cybern. 5(6), 933–945 (2014)

    Article  Google Scholar 

  43. Mapayi, T., Viriri, S., Tapamo, J.-R.: Retinal vessel segmentation based on phase congruence and GLCM sum-entropy. In: 2015 IEEE International Conference on Industrial Technology (ICIT), pp. 1759–1764. IEEE (2015)

  44. Oppenheim, A.V., Lim, J.S.: The importance of phase in signals. Proc. IEEE 69(5), 529–541 (1981)

    Article  Google Scholar 

  45. Morrone, M.C., Owens, R.A.: Feature detection from local energy. Pattern Recognit. Lett. 6(5), 303–313 (1987)

    Article  Google Scholar 

  46. Felsberg, M., Sommer, G.: A new extension of linear signal processing for estimating local properties and detecting features. In: Mustererkennung 2000, pp. 195–202. Springer (2000)

  47. Nguyen, H.N., Kam, T.Y., Cheng, P.Y.: Automatic crack detection from 2D images using a crack measure-based B-spline level set model. Multidimens. Syst. Signal Process. 29(1), 203–244 (2018)

    Article  MathSciNet  Google Scholar 

  48. Bhujle, H., Chaudhuri, S.: Novel speed-up strategies for non-local means denoising with patch and edge patch based dictionaries. IEEE Trans. Image Process. 23(1), 356–365 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  50. Rosin, P.L.: Unimodal thresholding. Pattern Recognit. 34(11), 2083–2096 (2001)

    Article  MATH  Google Scholar 

  51. Powers, D.M.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)

    MathSciNet  Google Scholar 

  52. Meyer-Spradow, J., Ropinski, T., Mensmann, J., Hinrichs, K.: Voreen: a rapid-prototyping environment for ray-casting-based volume visualizations. IEEE Comput. Graph. Appl. 29(6), 6–13 (2009)

    Article  Google Scholar 

  53. Heijmans, H., Buckley, M., Talbot, H.: Path openings and closings. J. Math. Imaging Vis. 22(2), 107–119 (2005)

    Article  MathSciNet  Google Scholar 

  54. Talbot, H., Appleton, B.: Efficient complete and incomplete path openings and closings. Image Vis. Comput. 25(4), 416–425 (2007)

    Article  Google Scholar 

  55. Hendriks, C.L.L.: Constrained and dimensionality-independent path openings. IEEE Trans. Image Process. 19(6), 1587–1595 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Kovesi, P.: Symmetry and asymmetry from local phase. In: Tenth Australian Joint Converence on Artificial Intelligence, pp. 2–4 (1997)

Download references

Acknowledgements

Thanks for the support of the National Natural Science Foundation of China (NSFC) (61371195). And the authors are grateful to Beijing Higher Institution Engineering Research Center of Testing and Imaging as well as Beijing Advanced Innovation Center for Imaging Technology for funding this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Zuo, F. & Li, H. Cracks Detection Using Iterative Phase Congruency. J Math Imaging Vis 60, 1065–1080 (2018). https://doi.org/10.1007/s10851-018-0796-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-018-0796-y

Keywords

Navigation