Skip to main content
Log in

Fast Blended Transformations for Partial Shape Registration

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Automatic estimation of skinning transformations is a popular way to deform a single reference shape into a new pose by providing a small number of control parameters. We generalize this approach by efficiently enabling the use of multiple exemplar shapes. Using a small set of representative natural poses, we propose to express an unseen appearance by a low-dimensional linear subspace, specified by a redundant dictionary of weighted vertex positions. Minimizing a nonlinear functional that regulates the example manifold, the suggested approach supports local-rigid deformations of articulated objects, as well as nearly isometric embeddings of smooth shapes. A real-time nonrigid deformation system is demonstrated, and a shape completion and partial registration framework is introduced. These applications can recover a target pose and implicit inverse kinematics from a small number of examples and just a few vertex positions. The resulting reconstruction is more accurate compared to alternative reduced deformable models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alexa, M.: Differential coordinates for local mesh morphing and deformation. Vis. Comput. 19(2), 105–114 (2003)

    MATH  Google Scholar 

  2. Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’00, pp. 157–164. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (2000). https://doi.org/10.1145/344779.344859

  3. Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans. Graph. 22(3), 587–594 (2003). https://doi.org/10.1145/882262.882311

    Article  Google Scholar 

  4. Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid icp algorithms for surface registration. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR ’07, pp. 1–8 (2007). https://doi.org/10.1109/CVPR.2007.383165

  5. Anguelov, D., Srinivasan, P., cheung Pang, H., Koller, D., Thrun, S., Davis, J.: The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems vol. 17, pp. 33–40. MIT Press, Cambridge (2005). http://papers.nips.cc/paper/2601-the-correlated-correspondence-algorithm-for-unsupervised-registration-of-nonrigid-surfaces.pdf

  6. Bogo, F., Romero, J., Loper, M., Black, M.J.: Faust: dataset and evaluation for 3d mesh registration. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

  7. Bouaziz, S., Martin, S., Liu, T., Kavan, L., Pauly, M.: Projective dynamics: fusing constraint projections for fast simulation. ACM Trans. Graph. 33(4), 154:1–154:11 (2014). https://doi.org/10.1145/2601097.2601116

    Article  MATH  Google Scholar 

  8. Bouaziz, S., Wang, Y., Pauly, M.: Online modeling for realtime facial animation. ACM Trans. Graph. (TOG) 32(4), 40 (2013)

    Article  MATH  Google Scholar 

  9. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-rigid Shapes. Springer, Berlin (2008)

    MATH  Google Scholar 

  10. Brunton, A., Wand, M., Wuhrer, S., Seidel, H.P., Weinkauf, T.: A low-dimensional representation for robust partial isometric correspondences computation. Graph. Models 76(2), 70–85 (2014)

    Article  Google Scholar 

  11. Chao, I., Pinkall, U., Sanan, P., Schröder, P.: A simple geometric model for elastic deformations. In: ACM SIGGRAPH 2010 Papers, SIGGRAPH’10, pp. 38:1–38:6. ACM, New York, NY, USA (2010). https://doi.org/10.1145/1833349.1778775

  12. Der, K.G., Sumner, R.W., Popović, J.: Inverse kinematics for reduced deformable models. ACM Trans. Graph. 25(3), 1174–1179 (2006). https://doi.org/10.1145/1141911.1142011

    Article  Google Scholar 

  13. Dey, T.K., Ranjan, P., Wang, Y.: Eigen deformation of 3d models. Vis. Comput. 28(6–8), 585–595 (2012)

    Article  Google Scholar 

  14. Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  15. Feng, W.W., Kim, B.U., Yu, Y.: Real-time data driven deformation using kernel canonical correlation analysis. In: ACM SIGGRAPH 2008 Papers, SIGGRAPH’08, pp. 91:1–91:9. ACM, New York, NY, USA (2008). https://doi.org/10.1145/1399504.1360690

  16. Fröhlich, S., Botsch, M.: Example-driven deformations based on discrete shells. Comput. Graph. Forum 30(8), 2246–2257 (2011). https://doi.org/10.1111/j.1467-8659.2011.01974.x

    Article  Google Scholar 

  17. Gao, L., Lai, Y.K., Liang, D., Chen, S.Y., Xia, S.: Efficient and flexible deformation representation for data-driven surface modeling. ACM Trans. Graph. (TOG) 35(5), 158 (2016)

    Article  Google Scholar 

  18. Grinspun, E., Hirani, A.N., Desbrun, M., Schröder, P.: Discrete shells. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA’03, pp. 62–67. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2003)

  19. Jacobson, A., Baran, I., Kavan, L., Popović, J., Sorkine, O.: Fast automatic skinning transformations. ACM Trans. Graph. 31(4), 77:1–77:10 (2012). https://doi.org/10.1145/2185520.2185573

    Article  Google Scholar 

  20. Jacobson, A., Baran, I., Popović, J., Sorkine-Hornung, O.: Bounded biharmonic weights for real-time deformation. Commun. ACM 57(4), 99–106 (2014). https://doi.org/10.1145/2578850

    Article  Google Scholar 

  21. James, D.L., Twigg, C.D.: Skinning mesh animations. In: ACM SIGGRAPH 2005 Papers, SIGGRAPH’05, pp. 399–407. ACM, New York, NY, USA (2005). https://doi.org/10.1145/1186822.1073206

  22. Kaufman, L., Rousseeuw, P.: Clustering by Means of Medoids. North-Holland, Amsterdam (1987)

    Google Scholar 

  23. Kavan, L., Sloan, P.P., O’Sullivan, C.: Fast and efficient skinning of animated meshes. Comput. Graph. Forum 29(2), 327–336 (2010). https://doi.org/10.1111/j.1467-8659.2009.01602.x

    Article  Google Scholar 

  24. Kim, V.G., Lipman, Y., Funkhouser, T.: Blended intrinsic maps. In: ACM SIGGRAPH 2011 Papers, SIGGRAPH’11, pp. 79:1–79:12. ACM, New York, NY, USA (2011). https://doi.org/10.1145/1964921.1964974

  25. Koyama, Y., Takayama, K., Umetani, N., Igarashi, T.: Real-time example-based elastic deformation. In: Proceedings of the 11th ACM SIGGRAPH/Eurographics Conference on Computer Animation, EUROSCA’12, pp. 19–24. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2012). https://doi.org/10.2312/SCA/SCA12/019-024

  26. Kry, P.G., James, D.L., Pai, D.K.: Eigenskin: real time large deformation character skinning in hardware. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA’02, pp. 153–159. ACM, New York, NY, USA (2002). https://doi.org/10.1145/545261.545286

  27. Le, B.H., Deng, Z.: Robust and accurate skeletal rigging from mesh sequences. ACM Trans. Graph. 33(4), 84:1–84:10 (2014). https://doi.org/10.1145/2601097.2601161

    Article  MATH  Google Scholar 

  28. Levi, Z., Gotsman, C.: Smooth rotation enhanced as-rigid-as-possible mesh animation. IEEE Trans. Vis. Comput. Graph. 21(2), 264–277 (2015)

    Article  Google Scholar 

  29. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’00, pp. 165–172. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (2000). https://doi.org/10.1145/344779.344862

  30. Li, H., Sumner, R.W., Pauly, M.: Global correspondence optimization for non-rigid registration of depth scans. Comput. Graph. Forum 27(5), 1421–1430 (2008). https://doi.org/10.1111/j.1467-8659.2008.01282.x

    Article  Google Scholar 

  31. Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rossi, C., Seidel, H.P.: Differential coordinates for interactive mesh editing. In: Shape Modeling Applications, 2004. Proceedings, pp. 181–190 (2004). https://doi.org/10.1109/SMI.2004.1314505

  32. Liu, L., Zhang, L., Xu, Y., Gotsman, C., Gortler, S.J.: A local/global approach to mesh parameterization. Comput. Graph. Forum 27(5), 1495–1504 (2008). https://doi.org/10.1111/j.1467-8659.2008.01290.x

    Article  Google Scholar 

  33. Magnenat-thalmann, N., Laperrire, R., Thalmann, D., Montral, U.D.: Joint-dependent local deformations for hand animation and object grasping. In: Proceedings on Graphics interface vol. 88, pp. 26–33 (1988)

  34. Martin, S., Thomaszewski, B., Grinspun, E., Gross, M.: Example-based elastic materials. ACM Trans. Graph. 30(4), 72:1–72:8 (2011). https://doi.org/10.1145/2010324.1964967

    Article  Google Scholar 

  35. McAdams, A., Selle, A., Tamstorf, R., Teran, J., Sifakis, E.: Computing the singular value decomposition of 3\(\times \) 3 matrices with minimal branching and elementary floating point operations. Technical Report, University of Wisconsin-Madison (2011)

  36. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993). https://doi.org/10.1080/10586458.1993.10504266

    Article  MathSciNet  MATH  Google Scholar 

  37. Rodolà, E., Cosmo, L., Bronstein, M.M., Torsello, A., Cremers, D.: Partial functional correspondence. In: Computer Graphics Forum. Wiley Online Library (2016)

  38. Schumacher, C., Thomaszewski, B., Coros, S., Martin, S., Sumner, R., Gross, M.: Efficient simulation of example-based materials. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 1–8. Eurographics Association (2012)

  39. Sloan, P.P.J., Rose III, C.F., Cohen, M.F.: Shape by example. In: Proceedings of the 2001 Symposium on Interactive 3D Graphics, I3D’01, pp. 135–143. ACM, New York, NY, USA (2001). https://doi.org/10.1145/364338.364382

  40. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proceedings of EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing, pp. 109–116 (2007)

  41. Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. ACM Trans. Graph. 23(3), 399–405 (2004). https://doi.org/10.1145/1015706.1015736

    Article  Google Scholar 

  42. Sumner, R.W., Zwicker, M., Gotsman, C., Popović, J.: Mesh-based inverse kinematics. In: ACM SIGGRAPH 2005 Papers, SIGGRAPH’05, pp. 488–495. ACM, New York, NY, USA (2005). https://doi.org/10.1145/1186822.1073218

  43. van Kaick, O., Zhang, H., Hamarneh, G.: Bilateral maps for partial matching. In: Computer Graphics Forum, vol. 32, pp. 189–200. Wiley Online Library (2013)

  44. Von-Tycowicz, C., Schulz, C., Seidel, H.P., Hildebrandt, K.: Real-time nonlinear shape interpolation. ACM Trans. Graph. 34(3), 34:1–34:10 (2015). https://doi.org/10.1145/2729972

    Article  MATH  Google Scholar 

  45. Wang, R.Y., Pulli, K., Popović, J.: Real-time enveloping with rotational regression. ACM Trans. Graph. (2007). https://doi.org/10.1145/1276377.1276468

  46. Wang, Y., Jacobson, A., Barbič, J., Kavan, L.: Linear subspace design for real-time shape deformation. ACM Trans. Graph. (TOG) 34(4), 57 (2015)

    Google Scholar 

  47. Winkler, T., Drieseberg, J., Alexa, M., Hormann, K.: Multi-scale geometry interpolation. Comput. Graph. Forum 29(2), 309–318 (2010). https://doi.org/10.1111/j.1467-8659.2009.01600.x

    Article  Google Scholar 

  48. Xu, D., Zhang, H., Wang, Q., Bao, H.: Poisson shape interpolation. Graph. Models 68(3), 268–281 (2006)

    Article  MATH  Google Scholar 

  49. Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., Van Kaick, O., Tagliasacchi, A.: Deformation-driven shape correspondence. Comput. Graph. Forum 27(5), 1431–1439 (2008). https://doi.org/10.1111/j.1467-8659.2008.01283.x

    Article  Google Scholar 

  50. Zhang, W., Zheng, J., Thalmann, N.M.: Real-time subspace integration for example-based elastic material. In: Computer Graphics Forum, vol. 34, pp. 395–404. Wiley Online Library (2015)

  51. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Funding was provided by European Research Council (Grant No. 267414).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alon Shtern.

Additional information

Alon Shtern and Matan Sela have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 12921 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shtern, A., Sela, M. & Kimmel, R. Fast Blended Transformations for Partial Shape Registration. J Math Imaging Vis 60, 913–928 (2018). https://doi.org/10.1007/s10851-017-0782-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-017-0782-9

Keywords

Navigation