Skip to main content
Log in

Densifying Distance Spaces for Shape and Image Retrieval

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Sparse data sets are an ever-present problem in many fields of computer science. In the shape retrieval community, several researchers use graph transduction algorithms to reveal the underlying structure of the shape manifold. Without an infinite number of shapes, the data sets can only imprecisely describe the shape manifold. For this problem, adding synthetic data points can be very effective. However existing methods add synthetic points only in feature space. In distance spaces, which are often non-metric and are widely used in bioinformatics, time series classification, shape similarity, and other domains, it is impossible to use these standard, feature-based methods, such as SMOTE, to insert synthetic points. Instead, we present an innovative approach that adds synthetic points directly to distance spaces. We call these synthetic points ghost points since they are not represented by vectors of features, and consequently, cannot be directly visualized. However, we can define the distances of ghost points to all other data points. Our experimental results on standard data sets show that ghost points not only significantly improve the accuracy of shape retrieval, but also the accuracy of image retrieval. We also discuss the conditions that allow the ghost points to improve retrieval results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. This fact was pointed out to us by an anonymous reviewer of our CVPR 2009 paper.

References

  1. Chawla, N.V., Bowyer, K.W., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    MATH  Google Scholar 

  2. Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: Smoteboost: improving prediction of the minority class in boosting. In: Proceedings of the Principles of Knowledge Discovery in Databases, PKDD-2003, pp. 107–119 (2003)

    Chapter  Google Scholar 

  3. Akbani, R., Kwek, S., Japkowicz, N.: Applying support vector machines to imbalanced datasets. In: ECML, pp. 39–50 (2004)

    Google Scholar 

  4. Han, H., Wang, W., Mao, B.: Borderline-smote: a new over-sampling method in imbalanced data sets learning. In: Lecture Notes in Computer, vol. 3644, pp. 878–887. Springer, Berlin (2005)

    Google Scholar 

  5. Dyn, N., Lipovetski, E.: An efficient algorithm for the computation of the metric average of two intersecting convex polygons with application to morphing. Adv. Comput. Math. 26, 269–282 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Latecki, L.J., Lakämper, R., Eckhardt, U.: Shape descriptors for non-rigid shapes with a single closed contour. In: CVPR, pp. 424–429 (2000)

    Google Scholar 

  7. Ling, H., Jacobs, D.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29, 286–299 (2007)

    Article  Google Scholar 

  8. Yang, X., Bai, X., Latecki, L.J., Tu, Z.: Improving shape retrieval by learning graph transduction. In: ECCV (2008)

    Google Scholar 

  9. Kontschieder, P., Donoser, M., Bischof, H.: Beyond pairwise shape similarity analysis. In: ACCV (2009)

    Google Scholar 

  10. Yang, X., Tezel, S.K., Latecki, L.J.: Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval. In: CVPR (2009)

    Google Scholar 

  11. Latecki, L.J., Lakämper, R.: Shape similarity measure based on correspondence of visual parts. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1185–1190 (2000)

    Article  Google Scholar 

  12. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24, 509–522 (2002)

    Article  Google Scholar 

  13. Bronstein, A.M., Bronstein, M.M., Bruckstein, A.M., Kimmel, R.: Partial similarity of objects, or how to compare a centaur to a horse. Int. J. Comput. Vis. 84, 163–183 (2009)

    Article  Google Scholar 

  14. McNeill, G., Vijayakumar, S.: Hierarchical procrustes matching for shape retrieval. In: Proc. CVPR (2006)

    Google Scholar 

  15. Felzenszwalb, P.F., Schwartz, J.: Hierarchical matching of deformable shapes. In: CVPR (2007)

    Google Scholar 

  16. Xu, C., Liu, J., Tang, X.: 2d shape matching by contour flexibility. IEEE Trans. Pattern Anal. Mach. Intell. 31, 180–186 (2009)

    Article  Google Scholar 

  17. Rodriguez, J., Aguiar, P., Xavier, J.: Ansig—an analytic signature for permutation-invariant two-dimensional shape representation. In: CVPR (2008)

    Google Scholar 

  18. Wang, N.P.C., Bronstein, M.M., Bronstein, A.M.: Discrete minimum distortion correspondence problems for non-rigid shape matching. In: Proc. Conf. on Scale Space and Variational Methods in Computer Vision (SSVM) (2011)

    Google Scholar 

  19. Zhou, D., Weston, J., Gretton, A., Bousquet, Q., Scholkopf, B.: Ranking on data manifolds. In: NIPS (2003)

    Google Scholar 

  20. Bai, X., Yang, X., Latecki, L.J., Liu, W., Tu, Z.: Learning context sensitive shape similarity by graph transduction. IEEE Trans. Pattern Anal. Mach. Intell.

  21. Zhu, X.: Semi-supervised learning with graphs. Doctoral Dissertation, Carnegie Mellon University (2005). CMU-LTI-05-192

  22. Ling, H., Yang, X., Latecki, L.J.: Balancing deformability and discriminability for shape matching. In: ECCV (2010)

    Google Scholar 

  23. Temlyakov, A., Munsell, B.C., Waggoner, J.W., Wang, S.: Two perceptually motivated strategies for shape classification. In: CVPR (2010)

    Google Scholar 

  24. Bai, X., Wang, B., Wang, X., Liu, W., Tu, Z.: Co-transduction for shape retrieval. In: ECCV (2010)

    Google Scholar 

  25. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: CVPR (2006)

    Google Scholar 

  26. Sivi, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: ICCV (2003)

    Google Scholar 

  27. Jegou, H., Schmid, C., Harzallah, H., Verbeek, J.: Accurate image search using the contextual dissimilarity measure. IEEE Trans. Pattern Anal. Mach. Intell. 32, 2–11 (2010)

    Article  Google Scholar 

  28. Jegou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image search. Int. J. Comput. Vis. 87, 191–212 (2010)

    Article  Google Scholar 

  29. Bronstein, A.M., Bronstein, M.M., Ovsjanikov, M., Guibas, L.J.: Shape Google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. 30(1), 1–20 (2011)

    Article  Google Scholar 

  30. Heath, K., Gelfand, N., Ovsjanikov, M., Aanjaneya, M., Guibas, L.J.: Image webs: computing and exploiting connectivity in image collections. In: CVPR (2010)

    Google Scholar 

  31. Strecha, C., Bronstein, A.M., Bronstein, M.M., Fua, P.: Ldahash: improved matching with smaller descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 34, 66–78 (2012)

    Article  Google Scholar 

  32. Schölkopf, B., Smola, A., Müller, K.-R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  33. Berard, P., Besson, G., Gallot, S.: Embedding Riemannian manifolds by their heat kernel. Geom. Funct. Anal. 4, 373–398 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Latecki, L.J., Wang, Q., Köknar-Tezel, S., Megalooikonomou, V.: Optimal subsequence bijection. In: IEEE International Conference on Data Mining, pp. 565–570 (2007). doi:10.1109/ICDM.2007.47

    Google Scholar 

  35. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD Workshop, pp. 359–370 (1994)

    Google Scholar 

  36. Rosman, G., Bronstein, M.M., Bronstein, A.M., Kimmel, R.: Nonlinear dimensionality reduction by topologically constrained isometric embedding. Int. J. Comput. Vis. 89(1), 56–68 (2010)

    Article  Google Scholar 

  37. Donoho, D., Grimes, C.: Hessian eigenmaps: locally linear embedding techniques for high-dimensional data. PNAS 100/10

  38. Matousek, J.: Lectures on Discrete Geometry. Springer, New York (2002)

    Book  MATH  Google Scholar 

  39. Georgiou, C., Hatami, R.H.: CSC2414-metric embeddings. Lecture 1: a brief introduction to metric embeddings, examples and motivation

  40. Laub, J., Müller, K.-R.: Feature discovery in non-metric pairwise data. J. Mach. Learn. Res. 5, 801–818 (2004)

    MATH  Google Scholar 

  41. Aizerman, A., Braverman, E.M., Rozoner, L.I.: Theoretical foundations of the potential function method in pattern recognition learning. Autom. Remote Control 25, 821–837 (1964)

    Google Scholar 

  42. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  43. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  44. Köknar-Tezel, S., Latecki, L.J.: Improving SVM classification on imbalanced time series data sets with ghost points. Knowl. Inf. Syst. 28, 1–23 (2011)

    Article  Google Scholar 

  45. Szummer, M., Jaakkola, T.: Partially labeled classification with Markov random walks. In: NIPS (2001)

    Google Scholar 

  46. Lafon, S., Lee, A.B.: Diffusion maps and coarse-graining: a unified framework for dimensionality reduction graph partitioning, and data set parameterization. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1393–1403 (2006)

    Article  Google Scholar 

  47. Wang, J., Chang, S.-F., Zhou, X., Wong, T.C.S.: Active microscopic cellular image annotation by superposable graph transduction with imbalanced labels. In: CVPR (2008)

    Google Scholar 

  48. Pekalska, E., Haasdonk, B.: Kernel discriminant analysis for positive definite and indefinite kernels. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1017–1031 (2009)

    Article  Google Scholar 

  49. Berard, P., Besson, G., Gallot, S.: Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44, 522–536 (1938)

    Article  Google Scholar 

  50. Tu, Z., Yuille, A.L.: Shape matching and recognition—using generative models and informative features. In: ECCV, pp. 195–209 (2004)

    Google Scholar 

  51. Adamek, T., O’Connor, N.: A multiscale representation method for nonrigid shapes with a single closed contour. IEEE Trans. Circuits Syst. Video Technol. 14(5), 742–753 (2004)

    Article  Google Scholar 

  52. Alajlan, N., Kamel, M., Freeman, G.: Geometry-based image retrieval in binary image databases. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1003–1013 (2008)

    Article  Google Scholar 

  53. Söderkvist, O.: Computer vision classification of leaves from Swedish trees. Master’s Thesis, Linköping University

  54. Stewenius, H., Nister, D.: Object recognition benchmark http://vis.uky.edu/~stewe/ukbench/

  55. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)

    Article  Google Scholar 

  56. Lowe, D.: Distinctive image features from scale-invariant key points. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  57. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28, 594–611 (2006)

    Article  Google Scholar 

  58. Lazebnik, S., Schimid, C., Ponce, J.: Beyong bags of features: spatial pyramid matching for recognizing natural scene categories. In: CVPR (2006)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the NSF under Grants IIS-0812118, BCS-0924164, OIA-1027897. This work was also supported by the Fundamental Research Funds for the Central Universities’ HUST 2011TS110, and National Natural Science Foundation of China under grant #60903096.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingwei Yang.

Additional information

The work was done when Xingwei Yang was a graduate student in Temple University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Bai, X., Köknar-Tezel, S. et al. Densifying Distance Spaces for Shape and Image Retrieval. J Math Imaging Vis 46, 12–28 (2013). https://doi.org/10.1007/s10851-012-0363-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0363-x

Keywords

Navigation