Skip to main content

Advertisement

Log in

Local versus Global in Quasi-Conformal Mapping for Medical Imaging

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

A method and algorithm of flattening folded surfaces, for two-dimensional representation and analysis of medical images, are presented. The method is based on an application to triangular meshes of classical results of Gehring and Väisälä regarding the existence of quasi-conformal and quasi-isometric mappings.

The proposed algorithm is basically local and, therefore, suitable for extensively folded surfaces encountered in medical imaging. The theory and algorithm guarantee minimal distance, angle and area distortion. Yet, the algorithm is relatively simple, robust and computationally efficient, since it does not require computational derivatives. Both random-starting-point and curvature-based versions of the algorithm are presented.

We demonstrate the algorithm using medical data obtained from real CT images of the colon and MRI scans of the human cortex. Further applications of the algorithm, for image processing in general are also considered. The globality of this algorithm is also studied, via extreme length methods for which we develop a technique of computing straightest geodesics on polyhedral surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov, A.D., Reshetnyak, Y.G.: General Theory of Iregular Curves. Mathematics and its Applications, vol. 29. Kluwer Academic, Dordrecht (1989)

    Google Scholar 

  2. Angenent, S., Haker, S., Tannenbaum, A., Kikinis, R.: On area preserving maps of minimal distortion. In: Djaferis, T., Schick, I. (eds.) System Theory: Modeling, Analysis, and Control, pp. 275–287. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  3. Appleboim, E., Saucan, E., Zeevi, Y.: Quasi-Conformal Flat Representation of Triangulated Surfaces for Computerized Tomography, CVAMIA 2006. Lecture Notes in Computer Science, vol. 4241, pp. 155–165. Springer, Berlin (2006)

    Google Scholar 

  4. Berger, M.: A Panoramic View of Riemannian Geometry. Springer, Berlin (2003)

    MATH  Google Scholar 

  5. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: On isometric embedding of facial surfaces into S3. In: Proc. Intl. Conf. on Scale Space and PDE Methods in Computer Vision, pp. 622–631 (2005)

  6. Caraman, P.: n-Dimensional Quasiconformal (QCf) Mappings. Abacus Press, Tunbridge Wells (1974). Editura Academiei Române, Bucharest

    MATH  Google Scholar 

  7. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  8. Clarenz, U., Litke, N., Rumpf, M.: Axioms and variational problems in surface parameterization. Comput. Aided Geom. Des. 21(8), 727–749 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gehring, W.F.: Topics in quasiconformal mappings. In: Vuorinen, M. (ed.) Quasiconformal Space Mappings—A Colection of Surveys 1960–1990. Lecture Notes in Mathematics, vol. 1508, pp. 20–38. Springer, Berlin (1991)

    Chapter  Google Scholar 

  10. Gehring, W.F., Väisälä, J.: The coefficients of quasiconformality. Acta Math. 114, 1–70 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gu, X., Wang, Y., Yau, S.T.: Computing conformal invariants: period matrices. Commun. Inf. Syst. 2(2), 121–146 (2003)

    Google Scholar 

  12. Gu, X., Yau, S.T.: Computing conformal structure of surfaces. Commun. Inf. Syst. 2(2), 121–146 (2002)

    MATH  MathSciNet  Google Scholar 

  13. Gu, X., Yau, S.T.: Global conformal surface parameterization. In: Eurographics Symposium on Geometry Processing (2003)

  14. Haker, S., Angenet, S., Tannenbaum, A., Kikinis, R.: Non distorting flattening maps and the 3-D visualization of colon CT images. In: IEEE Transauctions on Medical Imaging, vol. 19, No. 7 (2000)

  15. Haker, S., Angenet, S., Tannenbaum, A., Kikinis, R., Sapiro, G., Halle, M.: Conformal surface parametrization for texture mapping. In: IEEE Transauctions on Visualization and Computer Graphics, vol. 6, No. 2 (2000)

  16. Hallinan, P.: A low-dimensional representation of human faces for arbitrary lighting conditions. In: Proc. CVPR, pp. 995–999 (1994)

  17. Hilbert, D., Cohn-Vossen, S.: Geometry and the Imagination. Chelsea, New York (1952)

    MATH  Google Scholar 

  18. Hurdal, M.K.: Personal communication to ES

  19. Hurdal, M.K., Bowers, P.L., Stephenson, K., Sumners, D.W.L., Rehm, K., Schaper, K., Rottenberg, D.A.: Quasi conformally flat mapping the human crebellum. In: Taylor, C., Colchester, A. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI’99, vol. 1679, pp. 279–286. Springer, Berlin (1999)

    Chapter  Google Scholar 

  20. Hurdal, M.K., Stephenson, K.: Cortical cartography using the discrete conformal approach of circle packings. NeuroImage 23, 119–128 (2004)

    Article  Google Scholar 

  21. Kharevich, L., Springborn, B., Schröder, P.: Discrete conformal mapping via circle patterns. ACM Trans. Graph. 25(2), 412–438 (2006)

    Article  Google Scholar 

  22. Kimmel, R., Malladi, R., Sochen, N.: Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images. Int. J. Comput. Vis. 39(2), 111–129 (2000)

    Article  MATH  Google Scholar 

  23. Koenderink, J.J.: Solid Shape. MIT Press, Cambridge (1990)

    Google Scholar 

  24. Lehto, O., Virtanen, K.I.: Quasiconformal Mappings in the Plane. Springer, Berlin (1973)

    MATH  Google Scholar 

  25. Pieper, S., Halle, M., Kikinis, R.: 3D Slicer. In: IEEE International Symposium on Biomedical Imaging: Nano to Macro, vol. 1, pp. 632–635. IEEE Society (2004)

  26. Polthier, K., Schmies, M.: Straight geodesics on polyhedral surfaces. In: Hege, H.C., Polthier, K. (eds.) Mathematical Visualization, pp. 135–150. Springer, Berlin (1998)

    Google Scholar 

  27. Pogorelov, A.V.: Quasigeodesic lines on a convex surface. Am. Math. Soc. Transl. 6(72), 430–472 (1952)

    MathSciNet  Google Scholar 

  28. Saucan, E., Appleboim, E., Zeevi, Y.Y.: Image projection and representation on S n. J. Fourier Anal. Appl. 13(6), 711–727 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Saucan, E., Appleboim, E., Zeevi, Y.Y.: Sampling and reconstruction of surfaces and higher dimensional manifolds. J. Math. Imaging Vis. 30(1), 105–123 (2008)

    Article  MathSciNet  Google Scholar 

  30. Seung, H.S., Lee, D.D.: The manifold ways of perception. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  31. Sheffer, A., de Stuler, E.: Parametrization of faceted surfaces for meshing using angle based flattening. Eng. Comput. 17, 326–337 (2001)

    Article  MATH  Google Scholar 

  32. Stephenson, K.: Personal communication to ES

  33. Surazhsky, T., Magid, E., Soldea, O., Elber, G., Rivlin, E.: A comparison of Gaussian and mean curvatures estimation methods on triangular meshes. In: Proceedings of the IEEE International Conference on Robotics and Automation, Taipei, Taiwan, pp. 1021–1026 (2003)

  34. Thurston, W.: Three-Dimensional Geometry and Topology, vol. 1. Princeton University Press, Princeton (1997). (S. Levy (ed.))

    MATH  Google Scholar 

  35. Wardetzky, M., Bergou, M., Harmon, D., Zorin, D., Grinspun, E.: Discrete quadratic curvature energies. Comput. Aided Geom. Des. 24(8–9), 499–518 (2007)

    Article  MathSciNet  Google Scholar 

  36. http://visl.technion.ac.il/ImageSampling

  37. Zayer, R., Lévy, B., Seide, H.-P.: Linear angle based parameterization. In: Belyaev, A., Garland, M. (eds.) Proceedings of Eurographics Symposium on Image Processing (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Saucan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saucan, E., Appleboim, E., Barak-Shimron, E. et al. Local versus Global in Quasi-Conformal Mapping for Medical Imaging. J Math Imaging Vis 32, 293–311 (2008). https://doi.org/10.1007/s10851-008-0101-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-008-0101-6

Keywords

Navigation