Skip to main content

Advertisement

Log in

Automatic Image Segmentation by Tree Pruning

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The Image Foresting Transform (IFT) is a tool for the design of image processing operators based on connectivity, which reduces image processing problems into an optimum-path forest problem in a graph derived from the image. A new image operator is presented, which solves segmentation by pruning trees of the forest. An IFT is applied to create an optimum-path forest whose roots are seed pixels, selected inside a desired object. In this forest, object and background are connected by optimum paths (leaking paths), which cross the object’s boundary through its “most weakly connected” parts (leaking pixels). These leaking pixels are automatically identified and their subtrees are eliminated, such that the remaining forest defines the object. Tree pruning runs in linear time, is extensible to multidimensional images, is free of ad hoc parameters, and requires only internal seeds, with little interference from the heterogeneity of the background. These aspects favor solutions for automatic segmentation. We present a formal definition of the obtained objects, algorithms, sufficient conditions for tree pruning, and two applications involving automatic segmentation: 3D MR-image segmentation of the human brain and image segmentation of license plates. Given that its most competitive approach is the watershed transform by markers, we also include a comparative analysis between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Audigier, R., Lotufo, R.A., Falcão, A.X.: 3D visualization to assist iterative object definition from medical images. Comput. Med. Imaging Graph. 30(4), 217–230 (2006)

    Article  Google Scholar 

  2. Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transformation. In: Mathematical Morphology in Image Processing, pp. 433–481. Marcel Dekker, New York (1993)

    Google Scholar 

  3. Boykov, Y.Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: International Conference on Computer Vision (ICCV), vol. 1, pp. 105–112 (2001)

  4. Cohen, L.D.: On active contour models and balloons. Comput. Vis. Graph. Image Process. Image Underst. 53(2), 211–218 (1991)

    MATH  Google Scholar 

  5. Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., Evans, A.C.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imaging 17(3), 463–468 (1998)

    Article  Google Scholar 

  6. Cootes, T., Edwards, G., Taylor, C.J.: Active appearance models. In: European Conference on Computer Vision (ECCV), vol. 2, pp. 484–498 (1998)

  7. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models—their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  8. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-Interscience, New York (2000)

    Google Scholar 

  9. Falcão, A.X., Bergo, F.P.G.: Interactive volume segmentation with differential image foresting transforms. IEEE Trans. Med. Imaging 23(9), 1100–1108 (2004)

    Article  Google Scholar 

  10. Falcão, A.X., Bergo, F.P.G., Miranda, P.A.V.: Image segmentation by tree pruning. In: XVII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI), October 2004, pp. 65–71. IEEE, New York (2004)

    Chapter  Google Scholar 

  11. Falcão, A.X., Costa, L.F., da Cunha, B.S.: Multiscale skeletons by image foresting transform and its applications to neuromorphometry. Pattern Recognit. 35(7), 1571–1582 (2002)

    Article  MATH  Google Scholar 

  12. Falcão, A.X., da Cunha, B.S., Lotufo, R.A.: Design of connected operators using the image foresting transform. In: Proc. of SPIE on Medical Imaging, vol. 4322, pp. 468–479 (2001)

  13. Falcão, A.X., Stolfi, J., Lotufo, R.A.: The image foresting transform: Theory, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 19–29 (2004)

    Article  Google Scholar 

  14. Falcão, A.X., Udupa, J.K., Miyazawa, F.K.: An ultra-fast user-steered image segmentation paradigm: live-wire-on-the-fly. IEEE Trans. Med. Imaging 19(1), 55–62 (2000)

    Article  Google Scholar 

  15. Falcão, A.X., Udupa, J.K., Samarasekera, S., Sharma, S., Hirsch, B.E., Lotufo, R.A.: User-steered image segmentation paradigms: live-wire and live-lane. Graph. Models Image Process. 60(4), 233–260 (1998)

    Article  Google Scholar 

  16. Ford, L., Fulkerson, D.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  17. Frackowiak, R.S.J., Friston, K.J., Frith, C., Dolan, R., Price, C.J., Zeki, S., Ashburner, J., Penny, W.D.: Human Brain Function, 2nd edn. Academic Press, New York (2003)

    Google Scholar 

  18. Grau, V., Mewes, A.U.J., Alcaniz, M., Kikinis, R., Warfield, S.K.: Improved watershed transform for medical image segmentation using prior information. IEEE Trans. Med. Imaging 23(4), 447–458 (2004)

    Article  Google Scholar 

  19. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, New York (1998)

    Google Scholar 

  20. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1987)

    Article  Google Scholar 

  21. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)

    Article  Google Scholar 

  22. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience, New York (2004)

    MATH  Google Scholar 

  23. Lotufo, R.A., Falcão, A.X.: The ordered queue and the optimality of the watershed approaches. In: Mathematical Morphology and its Applications to Image and Signal Processing, vol. 18, pp. 341–350. Kluwer, Dordrecht (2000)

    Google Scholar 

  24. Lotufo, R.A., Falcão, A.X., Zampirolli, F.: IFT-Watershed from gray-scale marker. In: Proc. of XV Brazilian Symp. on Computer Graphics and Image Processing, October 2002, pp. 146–152. IEEE, New York (2002)

    Chapter  Google Scholar 

  25. Miranda, P.A.V., Bergo, F.P.G., Rocha, L.M., Falcão, A.X.: Tree-pruning: a new algorithm and its comparative analysis with the watershed transform for automatic image segmentation. In: XIX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI), October 2006, pp. 37–44. IEEE, New York (2006)

    Google Scholar 

  26. Nyul, L.G., Falcão, A.X., Udupa, J.K.: Fuzzy-connected 3D image segmentation at interactive speeds. Graph. Models 64(5), 259–281 (2003)

    Article  Google Scholar 

  27. Roerdink, J.B.T.M., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fundam. Inform. 41, 187–228 (2000)

    MATH  MathSciNet  Google Scholar 

  28. Saha, P.K., Udupa, J.K.: Relative fuzzy connectedness among multiple objects: theory, algorithms, and applications in image segmentation. Comput. Vis. Image Underst. 82, 42–56 (2001)

    Article  MATH  Google Scholar 

  29. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  30. Torres, R.S., Falcão, A.X.: Contour salience descriptors for effective image retrieval and analysis. Image Vis. Comput. 25(1), 3–13 (2007)

    Article  Google Scholar 

  31. Torres, R.S., Falcão, A.X., Costa, L.F.: A graph-based approach for multiscale shape analysis. Pattern Recognit. 37(6), 1163–1174 (2004)

    Article  Google Scholar 

  32. Udupa, J.K., Samarasekera, S.: Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graph. Models Image Process. 58, 246–261 (1996)

    Article  Google Scholar 

  33. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6) (1991)

  34. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Int. Conf. on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. I-511–I-518 (2001)

  35. Wang, S., Siskind, J.M.: Image segmentation with minimum mean cut. In: Int. Conf. on Computer Vision (ICCV), vol. 1, pp. 517–525 (2001)

  36. Zheng, D., Zhao, Y., Wang, J.: An efficient method of license plate location. Pattern Recognit. Lett. 26, 2431–2438 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre X. Falcão.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergo, F.P.G., Falcão, A.X., Miranda, P.A.V. et al. Automatic Image Segmentation by Tree Pruning. J Math Imaging Vis 29, 141–162 (2007). https://doi.org/10.1007/s10851-007-0035-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-007-0035-4

Keywords

Navigation