Skip to main content
Log in

Multiple Testing Correction in Medical Image Analysis

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We present a novel method for correcting the significance level of hypothesis testing that requires multiple comparisons. It is based on the spectral graph theory, in which the variables are seen as the vertices of a complete undirected graph and the correlation matrix as the adjacency matrix that weights its edges. The method increases the statistical power of the analysis by refuting the assumption of independence among variables, while keeping the probability of false positives low. By computing the eigenvalues of the correlation matrix, it is possible to obtain valuable information about the dependence levels among the variables of the problem, so that the effective number of independent variables can be estimated. The method is compared to other available models and its effectiveness illustrated in case studies involving high-dimensional sets of variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avants, B., Gee, J.C.: Soft parametric curve matching in scale-space. In: Sonka, M., Fitzpatrick, J.M. (eds.) Proceedings of the SPIE Medical Imaging 2002: Image Processing, pp. 1139–1151. San Diego, Bellingham (2002)

    Google Scholar 

  2. Bender, R., Lange, S.: Adjusting for multiple testing: when and how? J. Clin. Epidemiol. 54, 343–349 (2001)

    Article  Google Scholar 

  3. Benjamini, Y., Hochberg, T.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 85, 289–300 (1995)

    MathSciNet  Google Scholar 

  4. Bonferroni, C.E.: Teoria statistica delle classi e calcolo delle probabilità. R. Ist. Super. Sci. Econ. Commer. Firenze 8, 3–62 (1936)

    Google Scholar 

  5. Cheverud, J.M.: A simple correction for multiple comparisons in interval mapping genome scans. Heredity 87, 52–58 (2001)

    Article  Google Scholar 

  6. Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society, Fresno (1997)

    MATH  Google Scholar 

  7. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models: their training and applications. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  8. Davatzikos, C., Vaillant, M., Resnick, S., Prince, J., Letovsky, S., Bryan, R.: A computerized approach for morphological analysis of the corpus callosum. J. Comput. Assist. Tomogr. 20(1), 88–97 (1996)

    Article  Google Scholar 

  9. Dudbridge, F., Koeleman, B.P.C.: Efficient computation of significance levels for multiple associations in large studies of correlated data including genomewide association studies. Am. J. Hum. Genet. 75, 424–435 (2004)

    Article  Google Scholar 

  10. Evans, A., Collins, D., Brown, E., Kelly, R., Petters, T.: A 3D statistical neuroanatomical models for 305 MRI volumes. In: IEEE Nuclear Science Symposium/Medical Imaging Conference, pp. 1813–1817 (1993)

  11. Frackowiak, R., Friston, K., Frith, C., Dolan, R., Mazziotta, J.: Human Brain Function. Academic Press, San Diego (1997)

    Google Scholar 

  12. Golland, P., Fischl, B.: Permutation tests for classification: towards statistical significance in image-based studies. Lect. Notes Comput. Sci. 2732, 330–341 (2003)

    Google Scholar 

  13. Grossman, M., McMillan, C., Moore, P., Ding, L., Glosser, G., Work, M., Gee, J.: What’s in a name: voxel-based morphometric analyses of MRI and naming difficulty in Alzheimer’s disease, frontotemporal dementia and corticobasal degeneration. Brain 127, 1–22 (2004)

    Article  Google Scholar 

  14. Gur, R.E., Turetsky, B.I., Bilker, W.D., Gur, R.C.: Reduced gray matter volume in schizophrenia. Arch. Gen. Psychiatry 56, 905–911 (1999)

    Article  Google Scholar 

  15. Hochberg, Y.: A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75, 800–803 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Holm, S.: A simple sequential rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979)

    MathSciNet  MATH  Google Scholar 

  17. Hommel, G.: A stagewise rejective multiple test procedure on a modified Bonferroni test. Biometrika 75, 383–386 (1988)

    Article  MATH  Google Scholar 

  18. Li, J., Ji, L.: Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity 95, 221–227 (2005)

    Article  Google Scholar 

  19. Nyholt, D.R.: A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am. J. Hum. Gen. 74, 765–769 (2004)

    Article  Google Scholar 

  20. Nyholt, D.R.: Evaluation of Nyholt’s procedure for multiple testing correction—author’s reply. Hum. Hered. 60, 61–62 (2005)

    Article  Google Scholar 

  21. Pappas, T.N.: An adaptive clustering algorithm for image segmentation. IEEE Trans. Signal Process. 40, 901–914 (1992)

    Article  Google Scholar 

  22. Perneger, T.V.: What’s wrong with Bonferroni adjustments. Br. Med. J. 316, 1236–1238 (1998)

    Google Scholar 

  23. Rosenfeld, A., Kak, A.: Digital Picture Processing. Academic Press, Orlando (1982)

    Google Scholar 

  24. Rothman, K.J.: No adjustments are needed for multiple comparisons. Epidemiology 1, 43–46 (1990)

    Article  Google Scholar 

  25. Salyakina, D., Seaman, S.R., Browning, B.L., Dudbridge, F., Muller-Myhsok, B.: Evaluation of Nyholt’s procedure for multiple testing correction. Hum. Hered. 60, 19–25 (2005)

    Article  Google Scholar 

  26. Shtasel, D.L., Gur, R.E., Mozley, P.D., Richards, J., Taleff, M.M., Heimberg, C., Gallacher, F., Gur, R.C.: Volunteers for biomedical research: recruitment and screening of normal controls. Arch. Gen. Psychiatry 48, 1022–1025 (1991)

    Google Scholar 

  27. Sidak, Z.: Rectangular confidence regions for the means of multivariate normal distributions. J. Am. Stat. Assoc. 62, 626–633 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  28. Simes, J.R.: An improved Bonferroni procedure for multiple test of significance. Biometrika 73(3), 751–754 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  29. Strang, G.: Linear Algebra and Its Applications. Academic Press, San Diego (1980)

    Google Scholar 

  30. Thompson, P.M., Moussai, J., Zohoori, S., Goldkorn, A., Khan, A., Mega, M.S., Small, G., Cummings, J., Toga, A.W.: Cortical variability and asymmetry in normal aging and Alzheimer’s disease. Cereb. Cortex 8, 492–509 (1998)

    Article  Google Scholar 

  31. Wagner, G.: On the eigenvalue distribution of genetic and phenotypic dispersion matrices: evidence for a nonrandom organization of quantitative character variation. J. Math. Biol. 21, 77–95 (1984)

    MATH  MathSciNet  Google Scholar 

  32. Westfall, P.H., Young, S.S.: Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment. Wiley, New York (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Manso Corrêa Machado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machado, A.M.C. Multiple Testing Correction in Medical Image Analysis. J Math Imaging Vis 29, 107–117 (2007). https://doi.org/10.1007/s10851-007-0034-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-007-0034-5

Keywords

Navigation