Skip to main content
Log in

Synthesis of functional (thia)calix[4]arene derivatives using modular azide-alkyne cycloaddition approach

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 01 October 2023

This article has been updated

Abstract

Today, the modification of the organic molecules using the copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC) is of great interest, as evidenced by the Nobel Prize in Chemistry awarded in 2022 to the founder of “click” chemistry. Supramolecular chemistry, in turn, is one of the actively developing branches of modern science. Using the CuAAC approach is a very convenient method to obtain new macrocyclic structures of interest. This review focuses on the use of the modular “click”-chemistry approach for the synthesis of various triazole derivatives of thiacalix[4]arenes and calix[4]arenes as well as general routes for the synthesis of their precursors (azides and alkynes). Examples of some functional systems based on triazole-containing macrocycles, such as chemosensors, multicalixarenes, amphiphilic calixarenes as well as examples of the use of triazole calixarenes for bioapplications are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49

Similar content being viewed by others

Change history

References

  1. Neri, P., Sessler, J.L., Wang, M.-X. (eds.): Calixarenes and Beyond. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-31867-7

    Book  Google Scholar 

  2. Morohashi, N., Narumi, F., Iki, N., Hattori, T., Miyano, S.: Thiacalixarenes. Chem. Rev. 106, 5291–5316 (2006). https://doi.org/10.1021/cr050565j

    Article  CAS  PubMed  Google Scholar 

  3. Kumar, S., Chawla, S., Zou, M.C.: Calixarenes based materials for gas sensing applications: a review. J. Incl. Phenom. Macrocycl. Chem. 88, 129–158 (2017). https://doi.org/10.1007/s10847-017-0728-2

    Article  CAS  Google Scholar 

  4. Galieva, F., Khalifa, M., Akhmetzyanova, Z., Mironova, D., Burilov, V., Solovieva, S., Antipin, I.: New supramolecular hypoxia-sensitive complexes based on azo-thiacalixarene. Molecules. 28, 466 (2023). https://doi.org/10.3390/molecules28020466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Song, M., Sun, Z., Han, C., Tian, D., Li, H., Kim, J.S.: Calixarene-based chemosensors by means of click chemistry. Chem. Asian J. 9, 2344–2357 (2014). https://doi.org/10.1002/asia.201400024

    Article  CAS  PubMed  Google Scholar 

  6. Guo, C., Sedgwick, A.C., Hirao, T., Sessler, J.L.: Supramolecular fluorescent sensors: an historical overview and update. Coord. Chem. Rev. 427, 213560 (2021). https://doi.org/10.1016/j.ccr.2020.213560

    Article  CAS  PubMed  Google Scholar 

  7. Kumar, R., Sharma, A., Singh, H., Suating, P., Kim, H.S., Sunwoo, K., Shim, I., Gibb, B.C., Kim, J.S.: Revisiting fluorescent calixarenes: from molecular sensors to smart materials. Chem. Rev. 119, 9657–9721 (2019). https://doi.org/10.1021/acs.chemrev.8b00605

    Article  CAS  PubMed  Google Scholar 

  8. Santoro, O., Redshaw, C.: Metallocalix[n]arenes in catalysis: a 13-year update. Coord. Chem. Rev. 448, 214173 (2021). https://doi.org/10.1016/j.ccr.2021.214173

    Article  CAS  Google Scholar 

  9. Podyachev, S.N., Zairov, R.R., Mustafina, A.R.: 1,3-Diketone calix[4]arene derivatives—a new type of versatile ligands for metal complexes and nanoparticles. Molecules 26, 1214 (2021). https://doi.org/10.3390/molecules26051214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sachdeva, G., Vaya, D., Srivastava, C.M., Kumar, A., Rawat, V., Singh, M., Verma, M., Rawat, P., Rao, G.K.: Calix[n]arenes and its derivatives as organocatalysts. Coord. Chem. Rev. 472, 214791 (2022). https://doi.org/10.1016/j.ccr.2022.214791

    Article  CAS  Google Scholar 

  11. Zuo, M., Velmurugan, K., Wang, K., Tian, X., Hu, X.-Y.: Insight into functionalized-macrocycles-guided supramolecular photocatalysis. Beilstein J. Org. Chem. 17, 139–155 (2021). https://doi.org/10.3762/bjoc.17.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pan, Y., Hu, X., Guo, D.: Biomedical applications of calixarenes: state of the art and perspectives. Angew Chem. Int. Ed. 60, 2768–2794 (2021). https://doi.org/10.1002/anie.201916380

    Article  CAS  Google Scholar 

  13. Crowley, P.B.: Protein–calixarene complexation: from recognition to assembly. Acc. Chem. Res. 55, 2019–2032 (2022). https://doi.org/10.1021/acs.accounts.2c00206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Solovieva, S.E., Burilov, V.A., Antipin, I.S.: Thiacalix[4]arene’s lower rim derivatives: synthesis and supramolecular properties. Macroheterocycles 10, 134–146 (2017). https://doi.org/10.6060/mhc170512a

    Article  CAS  Google Scholar 

  15. Geng, W.-C., Huang, Q., Xu, Z., Wang, R., Guo, D.-S.: Gene delivery based on macrocyclic amphiphiles. Theranostics. 9, 3094–3106 (2019). https://doi.org/10.7150/thno.31914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fan, X., Guo, X.: Development of calixarene-based drug nanocarriers. J. Mol. Liq. 325, 115246 (2021). https://doi.org/10.1016/j.molliq.2020.115246

    Article  CAS  Google Scholar 

  17. Krošl, I., Otković, E., Nikšić-Franjić, I., Colasson, B., Reinaud, O., Višnjevac, A., Piantanida, I.: Impact of positive charge and ring-size on the interactions of calixarenes with DNA, RNA and nucleotides. New J. Chem. 46, 6860–6869 (2022). https://doi.org/10.1039/D2NJ00061J

    Article  Google Scholar 

  18. Pineda-Castañeda, H.M., Rivera-Monroy, Z.J., Maldonado, M.: Copper(I)-catalyzed alkyne–azide cycloaddition (CuAAC) “click” reaction: a powerful tool for functionalizing polyhydroxylated platforms. ACS Omega 8, 3650–3666 (2023). https://doi.org/10.1021/acsomega.2c06269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fatykhova, G.A., Makarov, E.G., Mironova, D.A., Sultanova, E.D., Burilov, V.A., Solovieva, S.E., Antipin, I.S.: New amphiphilic calix[4]Arene derivatives with 4,5-dicarboxytriazolyl fragments: synthesis and use in micellar catalysis. Russ. J. Phys. Chem. B 13, 401–407 (2019). https://doi.org/10.1134/S1990793119030163

    Article  CAS  Google Scholar 

  20. Liemburg-Apers, D.C., Imamura, H., Forkink, M., Nooteboom, M., Swarts, H.G., Brock, R., Smeitink, J.A.M., Willems, P.H.G.M., Koopman, W.J.H.: Quantitative glucose and ATP sensing in mammalian cells. Pharm. Res. 28, 2745–2757 (2011). https://doi.org/10.1007/s11095-011-0492-8

    Article  CAS  PubMed  Google Scholar 

  21. Burilov, V.A., Fatikhova, G.A., Dokuchaeva, M.N., Nugmanov, R.I., Mironova, D.A., Dorovatovskii, P.V., Khrustalev, V.N., Solovieva, S.E., Antipin, I.S.: Synthesis of new p-tert -butylcalix[4]arene-based polyammonium triazolyl amphiphiles and their binding with nucleoside phosphates. Beilstein J. Org. Chem. 14, 1980–1993 (2018). https://doi.org/10.3762/bjoc.14.173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yamakawa, K., Nakano-Narusawa, Y., Hashimoto, N., Yokohira, M., Matsuda, Y.: Development and clinical trials of nucleic acid medicines for pancreatic cancer treatment. Int. J. Mol. Sci. 20, 4224 (2019). https://doi.org/10.3390/ijms20174224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ibragimova, R.R., Burilov, V.A., Aimetdinov, A.R., Mironova, D.A., Evtugyn, V.G., Osin, Y.N., Solovieva, S.E., Antipin, I.S.: Polycationic derivatives of p-tert-butylthiacalix[4]arene in 1,3-alternate stereoisomeric form: new DNA condensing agents. Macroheterocycles 9, 433–441 (2016). https://doi.org/10.6060/mhc161180b

    Article  CAS  Google Scholar 

  24. Kolb, H.C., Finn, M.G., Sharpless, K.B.: Click chemistry: diverse chemical function from a few good reactions. Angew Chem. Int. Ed. 40, 2004–2021 (2001)

    Article  CAS  Google Scholar 

  25. Thanigaiarasu, P.: Biomimetics in the design of medical devices. In: Shanmugam, P.S.T., Chokkalingam, L., Bakthavachalam, P. (eds.) Trends in development of medical devices, pp. 35–41. Elsevier, Amsterdam (2020). https://doi.org/10.1016/B978-0-12-820960-8.00003-4

    Chapter  Google Scholar 

  26. Schulze, B., Schubert, U.S.: Beyond click chemistry–supramolecular interactions of 1,2,3-triazoles. Chem. Soc. Rev. 43, 2522 (2014). https://doi.org/10.1039/c3cs60386e

    Article  CAS  PubMed  Google Scholar 

  27. Ali, A.A.: 1,2,3-Triazoles: synthesis and biological application. In: Kuznetsov, A. (ed.) Azoles—Synthesis, Properties, Applications and Perspectives. IntechOpen, London (2021). https://doi.org/10.5772/intechopen.92692

    Chapter  Google Scholar 

  28. Guo, H.-Y., Chen, Z.-A., Shen, Q.-K., Quan, Z.-S.: Application of triazoles in the structural modification of natural products. J. Enzyme Inhib. Med. Chem. 36, 1115–1144 (2021). https://doi.org/10.1080/14756366.2021.1890066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Malakhova, M., Gorbunov, A., Ozerov, N., Korniltsev, I., Ermolov, K., Bezzubov, S., Kovalev, V., Vatsouro, I.: Triazolated calix[4]semitubes: assembling strategies towards long multicalixarene architectures. Org. Chem. Front. 9, 3084–3092 (2022). https://doi.org/10.1039/D2QO00432A

    Article  CAS  Google Scholar 

  30. Gardiner, W.H., Camilleri, M., Martinez-Lozano, L.A., Bew, S.P., Stephenson, G.R.: Upper‐rim monofunctionalisation in the synthesis of triazole‐ and disulfide‐linked multicalix[4]‐ and ‐[6]arenes. Chem. Eur. J. 24, 19089–19097 (2018). https://doi.org/10.1002/chem.201804755

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, X., Pathak, P., Jayawickramarajah, J.: Design, synthesis, and applications of DNA–macrocyclic host conjugates. Chem. Commun. 54, 11668–11680 (2018). https://doi.org/10.1039/C8CC06716C

    Article  CAS  Google Scholar 

  32. Consoli, G.M.L., Granata, G., Geraci, C.: Design, synthesis, and drug solubilising properties of the first folate–calix[4]arene conjugate. Org. Biomol. Chem. 9, 6491 (2011). https://doi.org/10.1039/c1ob06032e

    Article  CAS  PubMed  Google Scholar 

  33. Rusu, R., Szumna, A., Rosu, N., Dumea, C., Danac, R.: New triazole appended tert-butyl calix[4]arene conjugates: synthesis, Hg2+ binding studies. Tetrahedron 71, 2922–2926 (2015). https://doi.org/10.1016/j.tet.2015.03.060

    Article  CAS  Google Scholar 

  34. Požar, J., Cvetnić, M., Usenik, A., Cindro, N., Horvat, G., Leko, K., Modrusan, M., Tomišić, V.: The role of triazole and glucose moieties in alkali metal cation complexation by lower-rim tertiary-amide calix[4]arene derivatives. Molecules. 27, 470 (2022). https://doi.org/10.3390/molecules27020470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, J.-S., Park, S.-Y., Kim, S.-H., Thuery, P., Souane, R., Matthews, S.E., Vicens, J.: A pyrenyl-appended triazole-based calix[4]arene as a fluorescent sensor for iodide ion. Bull. Korean Chem. Soc. 31, 624–629 (2010). https://doi.org/10.5012/bkcs.2010.31.03.624

    Article  CAS  Google Scholar 

  36. Sonogashira, K., Tohda, Y., Hagihara, N.: A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 16, 4467–4470 (1975). https://doi.org/10.1016/S0040-4039(00)91094-3

    Article  Google Scholar 

  37. Armaroli, N., Accorsi, G., Rio, Y., Ceroni, P., Vicinelli, V., Welter, R., Gu, T., Saddik, M., Holler, M., Nierengarten, J.-F.: Electronic properties of oligophenylenevinylene and oligophenyleneethynylene arrays constructed on the upper rim of a calix[4]arene core. New J. Chem. 28, 1627 (2004). https://doi.org/10.1039/b415063p

    Article  CAS  Google Scholar 

  38. Dondoni, A., Marra, A.: C-glycoside clustering on calix[4]arene, adamantane, and benzene scaffolds through 1,2,3-triazole inkers. J. Org. Chem. 71, 7546–7557 (2006). https://doi.org/10.1021/jo0607156

    Article  CAS  PubMed  Google Scholar 

  39. Desroches, C., Lopes, C., Kessler, V., Parola, S.: Design and synthesis of multifunctional thiacalixarenes and related metal derivatives for the preparation of sol–gel hybrid materials with non-linear optical properties. Dalton Trans. 10, 2085–2092 (2003). https://doi.org/10.1039/B210252H

    Article  Google Scholar 

  40. Yam, V.W.-W., Yip, S.-K., Yuan, L.-H., Cheung, K.-L., Zhu, N., Cheung, K.-K.: Synthesis, structure, and ion-binding properties of luminescent gold(I) alkynylcalix[4]crown-5 complexes. Organometallics. 22, 2630–2637 (2003). https://doi.org/10.1021/om030021c

    Article  CAS  Google Scholar 

  41. He, X., Yam, V.W.-W.: A highly selective bifunctional luminescence probe for potassium and fluoride ions. Org. Lett. 13, 2172–2175 (2011). https://doi.org/10.1021/ol200277n

    Article  CAS  PubMed  Google Scholar 

  42. Kašáková, M., Malinovská, L., Klejch, T., Hlaváčková, M., Dvořáková, H., Fujdiarová, E., Rottnerová, Z., Maťátková, O., Lhoták, P., Wimmerová, M., Moravcová, J.: Selectivity of original C-hexopyranosyl calix[4]arene conjugates towards lectins of different origin. Carbohydr. Res. 469, 60–72 (2018). https://doi.org/10.1016/j.carres.2018.08.012

    Article  CAS  PubMed  Google Scholar 

  43. Lim, C., Sandman, D.J., Sukwattanasinitt, M.: Topological polymerization of tert-butylcalix[4]arenes containing diynes. Macromolecules 41, 675–681 (2008). https://doi.org/10.1021/ma0716128

    Article  CAS  Google Scholar 

  44. Agrahari, A.K., Singh, A.K., Singh, A.S., Singh, M., Maji, P., Yadav, S., Rajkhowa, S., Prakash, P., Tiwari, V.K.: Click inspired synthesis of p-tert -butyl calix[4]arene tethered benzotriazolyl dendrimers and their evaluation as anti-bacterial and anti-biofilm agents. New. J. Chem. 44, 19300–19313 (2020). https://doi.org/10.1039/D0NJ02591G

    Article  CAS  Google Scholar 

  45. Burilov, V.A., Valiyakhmetova, A.M., Aukhadieva, R.I., Solovieva, S.E., Antipin, I.S.: Synthesis of new p-tert-butylcalix[4]arene derivatives containing photopolymerizable 1,3-butadiyne fragments. Russ. J. Gen. Chem. 87, 1946–1951 (2017). https://doi.org/10.1134/S1070363217090092

    Article  CAS  Google Scholar 

  46. Matthews, S.E., Cecioni, S., O’Brien, J.E., MacDonald, C.J., Hughes, D.L., Jones, G.A., Ashworth, S.H., Vidal, S.: Fixing the conformation of calix[4]arenes: when are three carbons not enough?  Chem. Eur. J. 24, 4436–4444 (2018). https://doi.org/10.1002/chem.201705955

    Article  CAS  PubMed  Google Scholar 

  47. Muravev, A.A., Galieva, F.B., Strelnik, A.G., Nugmanov, R.I., Grüner, M., Solovieva, S.E., Latypov, S.K., Antipin, I.S., Konovalov, A.I.: Synthesis and structure of lower rim-substituted alkynyl derivatives of thiacalix[4]arene. Russ. J. Org. Chem. 51, 1334–1342 (2015). https://doi.org/10.1134/S1070428015090213

    Article  CAS  Google Scholar 

  48. Di Vincenzo, A., Palumbo Piccionello, A., Spinella, A., Chillura Martino, D., Russo, M., Lo Meo, P.: Polyaminoazide mixtures for the synthesis of pH-responsive calixarene nanosponges. Beilstein J. Org. Chem. 15, 633–641 (2019). https://doi.org/10.3762/bjoc.15.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parola, S., Desroches, C.: Recent advances in the functionalizations of the upper rims of thiacalix[4]arenes. a review. Collect. Czechoslov. Chem. Commun. 69, 966–983 (2004). https://doi.org/10.1135/cccc20040966

    Article  CAS  Google Scholar 

  50. Zadmard, R., Junkers, M., Schrader, T., Grawe, T., Kraft, A.: Capsule-like assemblies in polar solvents. J. Org. Chem. 68, 6511–6521 (2003). https://doi.org/10.1021/jo034592q

    Article  CAS  PubMed  Google Scholar 

  51. Burilov, V.A., Garipova, R.I., Solovieva, S.E., Antipin, I.S.: Synthesis of bifunctional derivatives of calix[4]arene bearing azidoalkyl fragments in cone stereoisomeric form. Dokl. Chem. 490, 1–5 (2020). https://doi.org/10.1134/S0012500820010012

    Article  CAS  Google Scholar 

  52. Burilov, V.A., Artemenko, A.A., Garipova, R.I., Amirova, R.R., Fatykhova, A.M., Borisova, J.A., Mironova, D.A., Sultanova, E.D., Evtugyn, V.G., Solovieva, S.E., Antipin, I.S.: New calix[4]arene-fluoresceine conjugate by click approach-synthesis and preparation of photocatalytically active solid lipid nanoparticles. Molecules 27, 2436 (2022). https://doi.org/10.3390/molecules27082436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fujii, S., Yamada, S., Araki, M., Lee, J.H., Takahashi, R., Sakurai, K.: Discrete and discontinuous increase in the micellar aggregation number: effects of the alkyl chain length on platonic micelles. Langmuir 35, 3156–3161 (2019). https://doi.org/10.1021/acs.langmuir.8b04204

    Article  CAS  PubMed  Google Scholar 

  54. Fatykhova, G.A., Burilov, V.A., Dokuchaeva, M.N., Solov’eva, S.E., Antipin, I.S.: Synthesis of tetraazide derivatives of p-tertbutylcalix[4]arene using copper-catalyzed nucleophilic aromatic substitution. Dokl. Chem. 479, 64–67 (2018). https://doi.org/10.1134/S0012500818040079

    Article  CAS  Google Scholar 

  55. Maurin, A., Varatharajan, S., Colasson, B., Reinaud, O.: A water-soluble calix[4]arene-based ligand for the selective linear coordination and stabilization of copper(I) ion in aerobic conditions. Org. Lett. 16, 5426–5429 (2014). https://doi.org/10.1021/ol502650c

    Article  CAS  PubMed  Google Scholar 

  56. Buttress, J.P., Day, D.P., Courtney, J.M., Lawrence, E.J., Hughes, D.L., Blagg, R.J., Crossley, A., Matthews, S.E., Redshaw, C., Page, B., Wildgoose, P.C.: Janus” calixarenes: double-sided molecular linkers for facile, multianchor point, multifunctional, surface modification. Langmuir 32, 7806–7813 (2016). https://doi.org/10.1021/acs.langmuir.6b02222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, T., Zhang, Z., Yue, Y., Hu, X., Huang, F., Shi, L., Liu, Y., Guo, D.: A general hypoxia-responsive molecular container for tumor‐targeted therapy. Adv. Mater. 32, 1908435 (2020). https://doi.org/10.1002/adma.201908435

    Article  CAS  Google Scholar 

  58. Burilov, V., Makarov, E., Mironova, D., Sultanova, E., Bilyukova, I., Akyol, K., Evtugyn, V., Islamov, D., Usachev, K., Mukhametzyanov, T., Solovieva, S., Antipin, I.: Calix[4]arene polyamine triazoles: synthesis, aggregation and DNA binding. Int. J. Mol. Sci. 23, 14889 (2022). https://doi.org/10.3390/ijms232314889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jurisch, C.D., Arnott, G.E.: Attempted synthesis of a meta -metalated calix[4]arene. Beilstein J. Org. Chem. 15, 1996–2002 (2019). https://doi.org/10.3762/bjoc.15.195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Luo, Z.-G., Zhao, Y., Xu, F., Ma, C., Xu, X.-M., Zhang, X.-M.: Synthesis and thermal properties of novel calix[4]arene derivatives containing 1,2,3-triazole moiety via K2CO3-catalyzed 1,3-dipolar cycloaddition reaction. Chin. Chem. Lett. 25, 1346–1348 (2014). https://doi.org/10.1016/j.cclet.2014.05.013

    Article  CAS  Google Scholar 

  61. Barboso, S., Carrera, A.G., Matthews, S.E., Arnaud-Neu, F., Böhmer, V., Dozol, J.-F., Rouquette, H., Schwing-Weill, M.-J.: Calix[4]arenes with CMPO functions at the narrow rim. Synthesis and extraction properties. J. Chem. Soc. Perkin Trans. 2, 4719–724 (1999). https://doi.org/10.1039/a900210c

    Article  Google Scholar 

  62. Ryu, E.-H., Zhao, Y.: Efficient synthesis of water-soluble calixarenes using click chemistry. Org. Lett. 7, 1035–1037 (2005). https://doi.org/10.1021/ol047468h

    Article  CAS  PubMed  Google Scholar 

  63. Gorbunov, A., Kuznetsova, J., Puchnin, K., Kovalev, V., Vatsouro, I.: Triazolated calix[4]arenes from 2-azidoethylated precursors: is there a difference in the way the triazoles are attached to narrow rims? New. J. Chem. 43, 4562–4580 (2019). https://doi.org/10.1039/C8NJ06464D

    Article  CAS  Google Scholar 

  64. Gorbunov, A., Kuznetsova, J., Deltsov, I., Molokanova, A., Cheshkov, D., Bezzubov, S., Kovalev, V., Vatsouro, I.: Selective azide-alkyne cycloaddition reactions of azidoalkylated calixarenes. Org. Chem. Front. 7, 2432–2441 (2020). https://doi.org/10.1039/D0QO00650E

    Article  CAS  Google Scholar 

  65. Drigo, N.A., Gorbunov, A.N., Gorbunov, D.N., Talanova, M.Y., Kardasheva, Y.S., Kovalev, V.V., Maximov, A.L., Vatsouro, I.M.: Synthesis of polyfunctional phosphorus-containing calixarenes in cycloaddition reactions of azides to alkynes. Chem. Heterocycl. Compd. 52, 1042–1053 (2016). https://doi.org/10.1007/s10593-017-2005-0

    Article  CAS  Google Scholar 

  66. Burilov, V.A., Mironova, D.A., Ibragimova, R.R., Solovieva, S.E., König, B., Antipin, I.S.: Thiacalix[4]arene-functionalized vesicles as phosphorescent indicators for pyridoxine detection in aqueous solution. RSC Adv. 5, 101177–101185 (2015). https://doi.org/10.1039/C5RA18294H

    Article  CAS  Google Scholar 

  67. Burilov, V., Valiyakhmetova, A., Mironova, D., Safiullin, R., Kadirov, M., Ivshin, K., Kataeva, O., Solovieva, S., Antipin, I.: “Clickable” thiacalix[4]arene derivatives bearing polymerizable 1,3-butadiyne fragments: Synthesis and incorporation into polydiacetylene vesicles. RSC Adv. 6, 44873–44877 (2016). https://doi.org/10.1039/C6RA07555J

    Article  CAS  Google Scholar 

  68. Burilov, V.A., Mironova, D.A., Grygoriev, I.A., Valiyakhmetova, A.M., Solovieva, S.E., Antipin, I.S.: Synthesis of water-soluble polyammonium thiacalix[4]arene derivative and its interaction with calf thymus DNA. Russ J. Gen. Chem. 90, 99–104 (2020). https://doi.org/10.1134/S1070363220010156

    Article  CAS  Google Scholar 

  69. Hardman, M.J., Thomas, A.M., Carroll, L.T., Williams, L.C., Parkin, S., Fantini, J.L.: Synthesis and ‘click’ cycloaddition reactions of tetramethoxy- and tetrapropoxy-2-(ω-azidoalkyl)calix[4]arenes. Tetrahedron. 67, 7027–7034 (2011). https://doi.org/10.1016/j.tet.2011.07.022

    Article  CAS  Google Scholar 

  70. Fischer, C., Weber, E.: Bis-calix[4]arene-based podants using the bridge position as a constructive mode of subunit connection. J. Incl. Phenom. Macrocycl. Chem. 79, 151–160 (2014). https://doi.org/10.1007/s10847-013-0338-6

    Article  CAS  Google Scholar 

  71. Hertel, M.P., Behrle, A.C., Williams, S.A., Schmidt, J.A.R., Fantini, J.L.: Synthesis of amine, halide, and pyridinium terminated 2-alkyl-p-tert-butylcalix[4]arenes. Tetrahedron. 65, 8657–8667 (2009). https://doi.org/10.1016/j.tet.2009.08.033

    Article  CAS  Google Scholar 

  72. Stejskal, F., Eigner, V., Dvorakova, H., Curinova, P., Lhotak, P.: Direct C–H azidation of calix[4]arene as a novel method to access meta substituted derivatives. Tetrahedron Lett. 56, 5357–5361 (2015). https://doi.org/10.1016/j.tetlet.2015.08.002

    Article  CAS  Google Scholar 

  73. Bew, S.P., Brimage, R.A., L’Hermit, N., Sharma, S.V.: Upper rim appended hybrid calixarenes via click chemistry. Org. Lett. 9, 3713–3716 (2007). https://doi.org/10.1021/ol071047t

    Article  CAS  PubMed  Google Scholar 

  74. Galante, E., Geraci, C., Sciuto, S., Campo, V.L., Carvalho, I., Sesti-Costa, R., Guedes, P.M.M., Silva, J.S., Hill, L., Nepogodiev, S.A., Field, R.: A glycoclusters presenting lactose on calix[4]arene cores display trypanocidal activity. Tetrahedron 67, 5902–5912 (2011). https://doi.org/10.1016/j.tet.2011.06.065

    Article  CAS  Google Scholar 

  75. Burilov, V.A., Nugmanov, R.I., Popova, E.V., Nabiullin, I.R., Solovieva, S.E., Antipin, I.S., Konovalov, A.I.: Bifunctional derivatives of (thia)calix[4]-arenes with terminal double and triple bonds: synthesis and azide-alkyne click reactions. Macroheterocycles 7, 10–17 (2014). https://doi.org/10.6060/mhc140272b

    Article  Google Scholar 

  76. Bicak, T.C., Gicevičius, M., Gokoglan, T.C., Yilmaz, G., Ramanavicius, A., Toppare, L., Yagci, Y.: Simultaneous and sequential synthesis of polyaniline-g-poly(ethylene glycol) by combination of oxidative polymerization and CuAAC click chemistry: a water-soluble instant response glucose biosensor material. Macromolecules 50, 1824–1831 (2017). https://doi.org/10.1021/acs.macromol.7b00073

    Article  CAS  Google Scholar 

  77. Spinella, A., Russo, M., Di Vincenzo, A., Martino, D.C., Meo, P.L.: Hyper-reticulated calixarene polymers: a new example of entirely synthetic nanosponge materials. Beilstein J. Org. Chem. 14, 1498–1507 (2018). https://doi.org/10.3762/bjoc.14.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yoon, H.Y., Lee, D., Lim, D., Koo, H., Kim, K.: Copper-free click chemistry: applications in drug delivery, cell tracking, and tissue engineering. Adv. Mater. 34, 10 (2022). https://doi.org/10.1002/adma.202107192

    Article  CAS  Google Scholar 

  79. Rahman, S., Assiri, Y., Alodhayb, A.N., Beaulieu, L.Y., Oraby, A.K., Georghiou, P.E.: Naphthyl “capped” triazole-linked calix[4]arene hosts as fluorescent chemosensors towards Fe3+ and Hg2+: an experimental and DFT computational study. New. J. Chem. 40, 434–440 (2016). https://doi.org/10.1039/C5NJ01362C

    Article  CAS  Google Scholar 

  80. Georghiou, P.E., Rahman, S., Alrawashdeh, A., Alodhayb, A., Valluru, G., Unikela, K.S., Bodwell, G.J.: Synthesis, supramolecular complexation and DFT studies of a bis(pyrene)-appended ‘capped’ triazole-linked calix[4]arene as Zn2+ and Cd2+ fluorescent chemosensors. Supramol. Chem. 32, 325–333 (2020). https://doi.org/10.1080/10610278.2020.1739686

    Article  CAS  Google Scholar 

  81. Sultan, S., Shah, A., Khan, B., Nisar, J., Shah, M.R., Ashiq, M.N., Akhter, M.S., Shah, A.H.: Calix[4]arene derivative-modified glassy carbon electrode: a new sensing platform for rapid, simultaneous, and picomolar detection of zn(II), pb(II), as(III), and hg(II). ACS Omega 4, 16860–16866 (2019). https://doi.org/10.1021/acsomega.9b01869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nag, R., Polepalli, S., Althaf Hussain, M., Rao, C.P.: Ratiometric Cu2+ binding, cell imaging, mitochondrial targeting, and anticancer activity with nanomolar IC50 by spiro-indoline-conjugated calix[4]arene. ACS Omega. 4, 13231–13240 (2019). https://doi.org/10.1021/acsomega.9b01402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hosseinzadeh, R., Domehri, E., Tajbakhsh, M., Bekhradnia, A.: New fluorescent sensor based on a calix[4]arene bearing two triazole–coumarin units for copper ions: application for Cu2+ detection in human blood serum. J. Incl. Phenom. Macrocycl. Chem. 93, 245–252 (2019). https://doi.org/10.1007/s10847-018-0872-3

    Article  CAS  Google Scholar 

  84. Zhao, J.-L., Tomiyasu, H., Wu, C., Cong, H., Zeng, X., Rahman, S., Georghiou, P.E., Hughes, D.L., Redshaw, C., Yamato, T.: Synthesis, crystal structure and complexation behaviour study of an efficient Cu2+ ratiometric fluorescent chemosensor based on thiacalix[4]arene. Tetrahedron. 71, 8521–8527 (2015). https://doi.org/10.1016/j.tet.2015.09.038

    Article  CAS  Google Scholar 

  85. Alodhayb, A.N., Braim, M., Beaulieu, L.Y., Valluru, G., Rahman, S., Oraby, A.K., Georghiou, P.E.: Metal ion binding properties of a bimodal triazolyl-functionalized calix[4]arene on a multi-array microcantilever system. Synthesis, fluorescence and DFT computation studies. RSC Adv. 6, 4387–4396 (2016). https://doi.org/10.1039/C5RA12685A

    Article  CAS  Google Scholar 

  86. Chen, Y.-J., Chen, M.-Y., Lee, K.-T., Shen, L.-C., Hung, H.-C., Niu, H.-C., Chung, W.-S.: 1,3-Alternate calix[4]arene functionalized with pyrazole and triazole ligands as a highly selective fluorescent sensor for Hg2+ and Ag+ ions. Front. Chem. 8, 593261 (2020). https://doi.org/10.3389/fchem.2020.593261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhao, H., Zhan, J., Zou, Z., Miao, F., Chen, H., Zhang, L., Cao, X., Tian, D., Li, H.: Novel 1,3-alternate thiacalix[4]arenes: click synthesis, silver ion binding and self-assembly. RSC Adv. 3, 1029–1032 (2013). https://doi.org/10.1039/C2RA22831A

    Article  CAS  Google Scholar 

  88. Ovsyannikov, A.S., Epifanova, N.A., Popova, E.V., Kyritsakas, N., Ferlay, S., Hosseini, M.W., Latypov, S.K., Solovieva, S.E., Antipin, I.S., Konovalov, A.I.: Template synthesis of tetrakis-triazolylthiacalix[4]arene in the cone conformation and supramolecular structure of its hexanuclear complex with ag(I). Macroheterocycles. 7, 189–195 (2014). https://doi.org/10.6060/mhc140273s

    Article  Google Scholar 

  89. Donnelly, K.F., Lalrempuia, R., Müller-Bunz, H., Albrecht, M.: Regioselective electrophilic C–H bond activation in triazolylidene metal complexes containing a N-bound phenyl substituent. Organometallics. 31, 8414–8419 (2012). https://doi.org/10.1021/om300983m

    Article  CAS  Google Scholar 

  90. Nehra, A., Yarramala, D.S., Rao, C.P.: A 1,3-capped calix[4]conjugate possessing an amine moiety as an anion receptor: reversible anion sensing detected by spectroscopy and characterization of the supramolecular features by microscopy. Chem. Eur. J. 22, 8980–8989 (2016). https://doi.org/10.1002/chem.201600609

    Article  CAS  PubMed  Google Scholar 

  91. Hosseinzadeh, R., Maliji, F., Golchoubian, H., Bekhradnia, A.: A novel ferrocene-based calix[4]arene as an efficient optical and electrochemical sensor for highly selective fluoride recognition. ChemistrySelect. 4, 3914–3920 (2019). https://doi.org/10.1002/slct.201900241

    Article  CAS  Google Scholar 

  92. Feng, J., Yang, G., Mei, Y., Cao, X., Wang, Y., Li, H., Lu, Q.: Macroscopic visual detection of phoxim by calix[4]arene-based host-guest chemistry. Sens. Actuators B Chem. 271, 264–270 (2018). https://doi.org/10.1016/j.snb.2018.05.107

    Article  CAS  Google Scholar 

  93. Quan, J., Nie, G., Xue, H., Luo, L., Zhang, R., Li, H.: Macroscopic chiral recognition by calix[4]arene-based host–guest interactions. Chem. Eur. J. 24, 15502–15506 (2018). https://doi.org/10.1002/chem.201803564

    Article  CAS  PubMed  Google Scholar 

  94. Muravev, A.A., Agarkov, A.S., Galieva, F.B., Yakupov, A.T., Bazanova, O.B., Rizvanov, I.K., Shokurov, A.V., Zaitseva, A.V., Selektor, S.L., Solovieva, S.E., Antipin, I.S.: New terpyridine derivatives of thiacalix[4]arenes in solution and at the water-air interface. Russ. Chem. Bull. 69, 339–350 (2020). https://doi.org/10.1007/s11172-020-2766-y

    Article  CAS  Google Scholar 

  95. Nag, R., Vashishtha, M., Rao, C.P.: Switching the ion selectivity from Fe3+ to Al3+ by a triazole-appended calix[4]arene-based amphiphile. ChemistrySelect. 3, 1248–1256 (2018). https://doi.org/10.1002/slct.201702999

    Article  CAS  Google Scholar 

  96. Chang, K.-C., Su, I.-H., Senthilvelan, A., Chung, W.-S.: Triazole-modified calix[4]crown as a novel fluorescent on-off switchable chemosensor. Org. Lett. 9, 3363–3366 (2007). https://doi.org/10.1021/ol071337+

    Article  CAS  PubMed  Google Scholar 

  97. Zhan, J., Tian, D., Li, H.: Synthesis of calix[4]crowns containing soft and hard ion binding sites via click chemistry. New. J. Chem. 33, 725–728 (2009). https://doi.org/10.1039/B816467C

    Article  CAS  Google Scholar 

  98. Morales-Sanfrutos, J., Ortega-Muñoz, M., Lopez-Jaramillo, J., Hernandez-Mateo, F., Santoyo-Gonzalez, F.: Synthesis of calixarene-based cavitands and nanotubes by click chemistry. J. Org. Chem. 73, 7768–7771 (2008). https://doi.org/10.1021/jo801325c

    Article  CAS  PubMed  Google Scholar 

  99. Khan, B., Shah, M.R., Rabnawaz, M.: Synthesis of novel macrocycles carrying pincer-type ligands as future candidates for potential applications in size-selective, stereochemical and recyclable catalysts. J. Mol. Struct. 1155, 734–744 (2018). https://doi.org/10.1016/j.molstruc.2017.11.040

    Article  CAS  Google Scholar 

  100. Muravev, A.A., Laishevtsev, A.I., Galieva, F.B., Bazanova, O.B., Rizvanov, I.K., Korany, A., Solovieva, S.E., Antipin, I.S., Konovalov, A.I.: Azide–akyne click approach to the preparation of dendrimer-type multi(thia)calix[4]arenes with triazole linkers. Macroheterocycles 10, 203–214 (2017). https://doi.org/10.6060/mhc170304m

    Article  CAS  Google Scholar 

  101. Thulasi, S., Savithri, A., Varma, R.L.: Calix[4]bis(spirodienone) as a versatile synthon for upper rim alkoxylation of calixarenes and synthesis of novel triazole-based biscalixarene by ‘CuAAC’ chemistry. Supramol Chem. 23, 501–508 (2011). https://doi.org/10.1080/10610278.2011.556252

    Article  CAS  Google Scholar 

  102. Läppchen, T., Dings, R.P.M., Rossin, R., Simon, J.F., Visser, T.J., Bakker, M., Walhe, P., van Mourik, T., Donato, K., van Beijnum, J.R., Griffioen, A.W., Lub, J., Robillard, M.S., Mayo, K.H., Grüll, H.: Novel analogs of antitumor agent calixarene 0118: synthesis, cytotoxicity, click labeling with 2-[18F]fluoroethylazide, and in vivo evaluation. Eur. J. Med. Chem. 89, 279–295 (2015). https://doi.org/10.1016/j.ejmech.2014.10.048

    Article  CAS  PubMed  Google Scholar 

  103. Dings, R.P.M., Miller, M.C., Nesmelova, I., Astorgues-Xerri, L., Kumar, N., Serova, M., Chen, X., Raymond, E., Hoye, T.R., Mayo, K.H.: Antitumor agent calixarene 0118 targets human galectin-1 as an allosteric inhibitor of carbohydrate binding. J. Med. Chem. 55, 5121–5129 (2012). https://doi.org/10.1021/jm300014q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Malakhova, M., Gorbunov, A., Lentin, I., Kovalev, V., Vatsouro, I.: Switchable silver-ion complexation by triazolated calix[4]semitubes. Org. Biomol. Chem. 20, 8092–8103 (2022). https://doi.org/10.1039/D2OB01588A

    Article  CAS  PubMed  Google Scholar 

  105. Feast, G.C., Lepitre, T., Mulet, X., Conn, C.E., Hutt, O.E., Savage, G.P., Drummond, C.J.: The search for new amphiphiles: synthesis of a modular, high-throughput library. Beilstein J. Org. Chem. 10, 1578 (2014). https://doi.org/10.3762/bjoc.10.163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hutt, O.E., Mulet, X., Savage, G.P.: Click-chemistry as a mix-and-match kit for amphiphile synthesis. ACS Comb. Sci. 14, 565 (2012). https://doi.org/10.1021/co300080g

    Article  CAS  PubMed  Google Scholar 

  107. Gou, P.-F., Zhu, W.-P., Shen, Z.-Q.: Calixarene-centered amphiphilic A2B2 miktoarm star copolymers based on poly(ε-caprolactone) and poly(ethylene glycol): synthesis and self-assembly behaviors in water. J. Polym. Sci. Part. A: Polym. Chem. 48, 5643–5651 (2010). https://doi.org/10.1002/pola.24316

    Article  CAS  Google Scholar 

  108. Fujii, S., Sanada, Y., Nishimura, T., Akiba, I., Sakurai, K., Yagi, N., Mylonas, E.: A stimulus-responsive shape-persistent micelle bearing a calix[4]arene building block: reversible pH-dependent transition between spherical and cylindrical forms. Langmuir 28, 3092–3101 (2012). https://doi.org/10.1021/la2037668

    Article  CAS  PubMed  Google Scholar 

  109. Fujii, S., Sakurai, K., Okobira, T., Ohta, N., Takahara, A.: Synthesis and characterization of a calix[4]arene amphiphilie bearing cysteine and uniform au nanoparticle formation templated by its four cysteine moieties. Langmuir. 29, 13666–13675 (2013). https://doi.org/10.1021/la403377a

    Article  CAS  PubMed  Google Scholar 

  110. Fujii, S., Nishina, K., Yamada, S., Mochizuki, S., Ohta, N., Takahara, A., Sakurai, K.: Micelles consisting of choline phosphate-bearing calix[4]arene lipids. Soft Matter. 10, 8216–8223 (2014). https://doi.org/10.1039/C4SM01355G

    Article  CAS  PubMed  Google Scholar 

  111. Yoshida, K., Fujii, S., Takahashi, R., Matsumoto, S., Sakurai, K.: Self-assembly of calix[4]arene-based amphiphiles bearing polyethylene glycols: another example of “platonic micelles.” Langmuir 33, 9122–9128 (2017). https://doi.org/10.1021/acs.langmuir.7b02196

    Article  CAS  PubMed  Google Scholar 

  112. Fujii, S., Takahashi, R., Sakurai, K.: Glutamic acids bearing calix[4]arene micelles: pH-controllable aggregation number corresponding to regular polyhedra. Langmuir. 33, 4019–4027 (2017). https://doi.org/10.1021/acs.langmuir.7b00603

    Article  CAS  PubMed  Google Scholar 

  113. Lee, J.H., Fujii, S., Takahashi, R., Sakurai, K.: Morphological transition of oppositely charged calix[4]arene surfactant mixture. Langmuir. 34, 12109–12115 (2018). https://doi.org/10.1021/acs.langmuir.8b02542

    Article  CAS  PubMed  Google Scholar 

  114. Mylonas, E., Yagi, N., Fujii, S., Ikesue, K., Ueda, T., Moriyama, H., Sanada, Y., Uezu, K., Sakurai, K., Okobira, T.: Structural analysis of a calix[4]arene-based platonic micelle. Sci. Rep. 9, 1982 (2019). https://doi.org/10.1038/s41598-018-38280-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Burilov, V., Valiyakhmetova, A., Mironova, D., Sultanova, E., Evtugyn, V., Osin, Y., Katsyuba, S., Burganov, T., Solovieva, S., Antipin, I.: Novel amphiphilic conjugates of p-tert -butylthiacalix[4]arene with 10,12-pentacosadiynoic acid in 1,3-alternate stereoisomeric form. Synthesis and chromatic properties in the presence of metal ions. New J. Chem. 42, 2942–2951 (2018). https://doi.org/10.1039/C7NJ04099G

    Article  CAS  Google Scholar 

  116. Valiyakhmetova, A.M., Sultanova, E.D., Burilov, V.A., Solovieva, S.E., Antipin, I.S.: New DNA-sensor based on thiacalix[4]arene-modified polydiacetylene particles. Russ. Chem. Bull. 68, 1067–1074 (2019). https://doi.org/10.1007/s11172-019-2521-4

    Article  CAS  Google Scholar 

  117. Burilov, V., Fatykhova, A., Mironova, D., Sultanova, E., Nugmanov, R., Artemenko, A., Volodina, A., Daminova, A., Evtugyn, V., Solovieva, S., Antipin, I.: Oxyethylated fluoresceine-(thia)calix[4]arene conjugates: synthesis and visible-light photoredox catalysis in water–organic media. Molecules 28, 261 (2022). https://doi.org/10.3390/molecules28010261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sreedevi, P., Nair, J.B., Preethanuj, P., Jeeja, B.S., Suresh, C.H., Maiti, K.K., Varma, R.L.: Calix[4]arene based redox sensitive molecular probe for SERS guided recognition of labile iron pool in tumor cells. Anal. Chem. 90, 7148–7153 (2018). https://doi.org/10.1021/acs.analchem.8b01982

    Article  CAS  PubMed  Google Scholar 

  119. Ramachandran, M., Anandan, S., Ashokkumar, M.: A luminescent on–off probe based calix[4]arene linked through triazole with ruthenium(II) polypyridine complexes to sense copper(II) and sulfide ions. New J. Chem. 43, 9832–9842 (2019). https://doi.org/10.1039/C9NJ01632E

    Article  CAS  Google Scholar 

  120. Bono, N., Pennetta, C., Sganappa, A., Giupponi, E., Sansone, F., Volonterio, A., Candiani, G.: Design and synthesis of biologically active cationic amphiphiles built on the calix[4]arene scaffold. Int. J. Pharm. 549, 436–445 (2018). https://doi.org/10.1016/j.ijpharm.2018.08.020

    Article  CAS  PubMed  Google Scholar 

  121. Mironova, D., Makarov, E., Bilyukova, I., Akyol, K., Sultanova, E., Evtugyn, V., Davletshin, D., Gilyazova, E., Bulatov, E., Burilov, V., Solovieva, S., Antipin, I.: Aggregation, cytotoxicity and DNA binding in a series of calix[4]arene amphiphile containing aminotriazole groups. Pharmaceutics. 16, 699 (2023). https://doi.org/10.3390/ph16050699

    Article  CAS  Google Scholar 

  122. Samanta, K., Ranade, D.S., Upadhyay, A., Kulkarni, P.P., Rao, C.P.: A bimodal, cationic, and water-soluble calix[4]arene conjugate: design, synthesis, characterization, and transfection of red fluorescent protein encoded plasmid in cancer cells. ACS Appl. Mater. Interfaces 9, 5109–5117 (2017). https://doi.org/10.1021/acsami.6b14656

    Article  CAS  PubMed  Google Scholar 

  123. Altaf, A.A., Hashmat, U., Yousaf, M., Lal, B., Ullah, S., Holder, A.A., Badshah, A.: Synthesis and characterization of azo-guanidine based alcoholic media naked eye DNA sensor. R Soc. Open. Sci. 3, 160351 (2016). https://doi.org/10.1098/rsos.160351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Costas-Lago, M.C., Vila, N., Rahman, A., Besada, P., Rozas, I., Brea, J., Loza, M.I., González-Romero, E., Terán, C.: Novel pyridazin-3(2H)-one-based guanidine derivatives as potential DNA minor groove binders with anticancer activity. ACS Med. Chem. Lett. 13, 463–469 (2022). https://doi.org/10.1021/acsmedchemlett.1c00633

    Article  CAS  PubMed  Google Scholar 

  125. Staszewski, M., Nelic, D., Jończyk, J., Dubiel, M., Frank, A., Stark, H., Bajda, M., Jakubik, J., Walczyński, K.: Guanidine derivatives: how simple structural modification of histamine H3R antagonists has led to the discovery of potent muscarinic M2R/M4R antagonists. ACS Chem. Neurosci. 12, 2503–2519 (2021). https://doi.org/10.1021/acschemneuro.1c00237

    Article  CAS  PubMed  Google Scholar 

  126. Gallego-Yerga, L., Lomazzi, M., Franceschi, V., Sansone, F., Ortiz Mellet, C., Donofrio, G., Casnati, A., García Fernández, J.M.: Cyclodextrin- and calixarene-based polycationic amphiphiles as gene delivery systems: a structure-activity relationship study. Org. Biomol. Chem. 13, 1708–1723 (2015). https://doi.org/10.1039/C4OB02204A

    Article  CAS  PubMed  Google Scholar 

  127. Ahmed, F., Perveen, S., Shah, K., Shah, M.R., Ahmed, S.: Synthesis and characterization of triazole based supramolecule for interaction with cefuroxime in tap water and blood plasma. Ecotoxicol. Environ. Saf. 147, 49–54 (2018). https://doi.org/10.1016/j.ecoenv.2017.08.023

    Article  CAS  PubMed  Google Scholar 

  128. Lo Meo, P., Lazzara, G., Liotta, L., Riela, S., Noto, R.: Cyclodextrin–calixarene co-polymers as a new class of nanosponges. Polym. Chem. 5, 4499–4510 (2014). https://doi.org/10.1039/C4PY00325J

    Article  CAS  Google Scholar 

  129. Cinà, V., Russo, M., Lazzara, G., Chillura Martino, D., Lo Meo, P.: Pre- and post-modification of mixed cyclodextrin–calixarene co-polymers: a route towards tunability. Carbohydr. Polym. 157, 1393–1403 (2017). https://doi.org/10.1016/j.carbpol.2016.11.018

    Article  CAS  PubMed  Google Scholar 

  130. Di Vincenzo, A., Russo, M., Cataldo, S., Milea, D., Pettignano, A., Lo Meo, P.: Effect of pH variations on the properties of cyclodextrin–calixarene nanosponges. ChemistrySelect 4, 6155–6161 (2019). https://doi.org/10.1002/slct.201901200

    Article  CAS  Google Scholar 

  131. Fontana, R.M., Milano, N., Barbara, L., Di Vincenzo, A., Gallo, G., Lo Meo, P.: Cyclodextrin–calixarene nanosponges as potential platforms for pH‐dependent delivery of tetracycline. ChemistrySelect 4, 9743–9747 (2019). https://doi.org/10.1002/slct.201902373

    Article  CAS  Google Scholar 

  132. Moni, L., Pourceau, G., Zhang, J., Meyer, A., Vidal, S., Souteyrand, E., Dondoni, A., Morvan, F., Chevolot, Y., Vasseur, J.-J., Marra, A.: Design of triazole-tethered glycoclusters exhibiting three different spatial arrangements and comparative study of their affinities towards PA-IL and RCA 120 by using a DNA-based glycoarray. ChemBioChem. 10, 1369–1378 (2009). https://doi.org/10.1002/cbic.200900024

    Article  CAS  PubMed  Google Scholar 

  133. Konvalinkova, D., Dolnicek, F., Hovorkova, M., Cerveny, J., Kundrat, O., Pelantova, H., Petraskova, L., Cvacka, J., Faizulina, M., Varghese, B., Kovaricek, P., Kren, V., Lhotak, P., Bojarová, P.: Glycocalix[4]arenes and their affinity to a library of galectins: the linker matters. Org. Biomol. Chem. 21, 1294–1302 (2023). https://doi.org/10.1039/D2OB02235D

    Article  CAS  PubMed  Google Scholar 

  134. Burilov, V., Mironova, D.A., Ibragimova, R.R., Solovieva, S.E., Antipin, I.S.: Interactions of new bis-ammonium thiacalix[4]arene derivatives in 1,3-alternate stereoisomeric form with bovine serum albumin. BioNanoScience 6, 427–430 (2016). https://doi.org/10.1007/s12668-016-0255-4

    Article  Google Scholar 

  135. Burilov, V.A., Mironova, D.A., Ibragimova, R.R., Nugmanov, R.I., Solovieva, S.E., Antipin, I.S.: Detection of sulfate surface-active substances via fluorescent response using new amphiphilic thiacalix[4]arenes bearing cationic headgroups with eosin Y dye. Colloids Surf. A: Physicochem. Eng. Asp. 515, 41–49 (2017). https://doi.org/10.1016/j.colsurfa.2016.12.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Russian Science Foundation (Grant No. 21-73-10062) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

EM, ZI and VB wrote the main manuscript text, SS and IA reviewed the manuscript.

Corresponding author

Correspondence to Vladimir Burilov.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Due to the incorrect numbering of the compounds, figures 29 to 49 are updated.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, E., Iskhakova, Z., Burilov, V. et al. Synthesis of functional (thia)calix[4]arene derivatives using modular azide-alkyne cycloaddition approach. J Incl Phenom Macrocycl Chem 103, 319–353 (2023). https://doi.org/10.1007/s10847-023-01200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-023-01200-6

Keywords

Navigation