Skip to main content
Log in

Synthesis and NMR characterization of PEGylated β-cyclodextrins

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Cyclodextrins (CDs) and their chemical derivatives are well-known as effective carriers for low-water-soluble molecules for pharmaceutical and other industrial applications. We have carried out the synthesis of PEGylated β-CDs through ether chemical bond linkage between β-CD and poly(ethylene glycol) methyl ether (MPEG). The combination of β-CD with poly(ethylene glycol) will benefit from PEG’s properties including high water solubility, nontoxicity, non-immunogenicity, biocompatibility, and biodegradability. The synthesis proceeded through three steps: (a) tosylation of MPEG; (b) deprotonation of hydroxyl groups of β-CD using NaH; and (c) the combination of the above two intermediates through the SN2 mechanism to obtain the MPEG-β-CD compounds. The products were confirmed by MALDI-TOF mass spectrometry, and their structures were analyzed using 1H 2D COSY and ROESY NMR methods. It was found that the site of PEGylation occurred on the (OH)6 site of β-CD. The inclusion property of the MPEG-β-CDs was demonstrated by forming inclusion complexes with 1-fluroroadamantane. We anticipate that the newly added properties of the MPEG to β-CD promote their pharmaceutical and other industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Davis, M.E., Brewster, M.E.: Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov. 3, 1023–1035 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. Manakker, FVd., Vermonden, T., Nostrum, C.F.V., Hennink, W.E.: Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromol 12, 3157–3175 (2009)

    Article  Google Scholar 

  3. Loftsson, T., Vogensen, S.B., Brewster, M.E., Konráðsdóttir, F.: Effects of cyclodextrins on drug delivery through biological membranes. J Pharm Sci 96, 2532–2546 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. Das, S.K., Rajabalaya, R., David, S.G., Khanam, J., Nanda, A.: Cyclodextrins-the molecular container. research journal of pharmaceutical. Biol. Chem. Sci. 4, 1694–1720 (2013)

    CAS  Google Scholar 

  5. Agrawal, R., Gupta, V.: Cyclodextrins – a review on pharmaceutical application for drug delivery. Int. J. Pharm. Front. Res. 2, 95–112 (2012)

    CAS  Google Scholar 

  6. Szejtli, J.: Past, present, and future of cyclodextrin research. Pure Appl. Chem. 76, 1825–1845 (2004)

    Article  CAS  Google Scholar 

  7. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59, 645–666 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. Challa, R., Ahuja, A., Ali, J., Kharl, R.K.: Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech 6(2), E329-357 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Katageri Akshaw, R., Sheikh Mohsin, A.: Cyclodextrin a gift to pharmaceutical world review. Int. Res. J. Pharm. 3, 52–56 (2012)

    Google Scholar 

  10. Loftsson, T., Brewester, M.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)

    Article  CAS  PubMed  Google Scholar 

  11. Loftsson, T., Duchêne, D.: Cyclodextrins and their pharmaceutical applications. Int J Pharm 329, 1–11 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. Loftsson, T., Brewster, M.E., Maásson, M.: Role of cyclodextrins in improving oral drug delivery. Am J Drug Deliv 2, 261–275 (2004)

    Article  CAS  Google Scholar 

  13. Loftsson, T., Jarho, P., Másson, M., Järvinen, T.: Cyclodextrins in drug delivery. Expert Opin Drug Deliv 2, 335–351 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. Astray, G., Gonzalez-Barreiro, C., Mejuto, J.C., Rial-Otero, R., Simal-Ga´ndara, J.: A review on the use of cyclodextrins in foods. Food Hydrocoll. 23, 1631–1640 (2009)

    Article  CAS  Google Scholar 

  15. Tarannum, N., Suhani, K.D.: Synthesis, characterization and applications of copolymer of β – cyclodextrin: a review. J. Polym. Res. 27, 89 (2020)

    Article  CAS  Google Scholar 

  16. Bezerra, F.M., Lis, M.J., Firmino, H.B., Silva, J.GDd., Valle, Rd.C.S.C., Valle, J.A.B., Scacchetti, F.A.P., Tessaro, A.L.: The role of β-cyclodextrin in the textile industry—review. Molecules 25, 3624 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao, S., Liu, Y., Jiang, J., Ji, Q., Fu, Y., Zhao, L., Li, C., Ye, F.: Physicochemical properties and fungicidal activity of inclusion complexes of fungicide chlorothalonil with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. J. Mol. Liq. 293, 111513 (2019)

    Article  CAS  Google Scholar 

  18. Waris, K.H., Lee, V.S., Mohamad, S.: Pesticide remediation with cyclodextrins: a review. Environ. Sci. Pollut. Res. 28, 47785–47799 (2021)

    Article  CAS  Google Scholar 

  19. Roy, A., Manna, K., Dey, S., Pal, S.: Chemical modification of β-cyclodextrin towards hydrogel formation. Carbohyd. Polym. 306, 120576 (2023)

    Article  CAS  Google Scholar 

  20. Huina, C., Eskandania, Z., Badib, N., Farcasc, A., Bennevault-Celtona, V., Guégand, P.: Anionic ring-opening polymerization of ethylene oxide in DMF with cyclodextrin derivatives as new initiators. Carbohyd. Polym. 94, 323–331 (2013)

    Article  Google Scholar 

  21. Yuan, C., Bai, Y.-X., Jin, Z.-Y.: Chapter 5 Preparation and Analysis of Cyclodextrin Derivatives. In: Jin, Z.-Y. (ed.) CYCLODEXTRIN CHEMISTRY Preparation and Application, pp. 135–182. World Scientific, New Jersey (2013)

    Chapter  Google Scholar 

  22. Harris, J.M.: Introduction to Biotechnical and Biomedical Applications of Poly (Ethylene Glycol). In: Harris, J.M. (ed.) Poly (Ethylene Glycol) Chemistry Biotechnical and Biomedical Applications. Plenum Press, New York (1992)

    Chapter  Google Scholar 

  23. Harris, J.M., Chess, R.B.: Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2, 214–221 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. Mahou, R., Wandrey, C.: Versatile route to synthesize heterobifunctionalpoly(ethylene glycol) of variable functionality for subsequent pegylation. Polymers 4, 561–589 (2012)

    Article  Google Scholar 

  25. Zalipsky, S.: Functionalized Poly(ethene glycol) for preparation of biologically relevant conjugates. Bioconjugafe Chem 6, 150–165 (1995)

    Article  CAS  Google Scholar 

  26. Marshall, D., Boden, R.P.J., Boden, R., Melton, R., Begent, R.: Polyethylene glycol modification of a galactosylated streptavidin clearing agent: effects on immunogenicity and clearance of a biotinylated anti-tumour antibody. Br. J. Cancer 73, 565–572 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Harris, J.M. (ed.): Plenum Press, New York and London (1992)

    Google Scholar 

  28. Lai, S.K., O’Hanlon, D.E., Harrold, S., Man, S.T., Wang, Y.-Y., Cone, R., Hanes, A.J.: Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl. Acad. Sci. 104, 1482–1487 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hassan Namazi, S.B., Entezami, A.A.: Synthesis and controlled release of biocompatible prodrugs of β-Cyclodextrin linked with PEG containing Ibuprofen or Indomethacin. Iran. Polym. J. 14, 921–927 (2005)

    Google Scholar 

  30. Yoncheva, K., Gómez, S., Campanero, M.A., Gamazo, C., Irache, J.M.: Bioadhesive properties of pegylated nanoparticles. Expert Opin Drug Deliv 2, 205–218 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. Peppas, N.A., Keys, K.B., Torres-Lugo, M., Lowman, A.M.: Poly(ethylene glycol)-containing hydrogels in drug delivery. J Control Release 62, 81–87 (1999)

    Article  CAS  PubMed  Google Scholar 

  32. Bures, P., Huang, Y., Oral, E., Peppas, N.A.: Surface modifications and molecular imprinting of polymers in medical and pharmaceutical applications. J Control Release 72(1–3), 25–33 (2001)

    Article  CAS  PubMed  Google Scholar 

  33. Fresta, M., Fontana, G., Bucolo, C., Cavallaro, G., Giammona, G., Puglisi, G.: Ocular tolerability and in vivo bioavailability of poly(ethylene glycol) (PEG)-coated polyethyl-2-cyanoacrylate nanosphere-encapsulated acyclovir. J Pharm Sci 90(3), 288–297 (2001)

    Article  CAS  PubMed  Google Scholar 

  34. Huang, Y., Leobandung, W., Foss, A., Peppas, N.A.: Molecular aspects of muco- and bioadhesion: Tethered structures and site-specific surfaces. J Controlled Release 65, 63–71 (2000)

    Article  CAS  Google Scholar 

  35. Sahlin, J.J., Peppas, N.A.: Enhanced hydrogel adhesion by polymer interdiffusion: use of linear poly(ethylene glycol) as an adhesion promoter. J Biomater Sci Polym Ed. 8(6), 421–436 (1997)

    Article  CAS  PubMed  Google Scholar 

  36. Cheng, J., Khin, K.T., Jensen, G.S., Liu, A., Davis, M.E.: Synthesis of linear, β-Cyclodextrin-based polymers and their camptothecin conjugates. Bioconjugate Chem 14, 1007–1017 (2003)

    Article  CAS  Google Scholar 

  37. Norman, A.I., Fei, Y., Ho, D.L., Greer, S.C.: Folding and unfolding of polymer helices in solution. Macromolecules 40, 2559–2567 (2007)

    Article  CAS  Google Scholar 

  38. Pai, S.S., Hammouda, B., Hong, K., Pozzo, D.C., Przybycien, T.M., Tilton, R.D.: The conformation of the Poly(ethylene glycol) chain in Mono-PEGylated lysozyme and mono-PEGylated human growth hormone. Bioconjugafe Chemistry 22, 2317–2323 (2011)

    Article  CAS  Google Scholar 

  39. Alessi, M.L., Norman, A.I., Knowlton, S.E., Ho, D.L., Greer, S.C.: Helical and coil conformations of Poly(ethylene glycol) in isobutyric acid and water. Macromolecules 38, 9333–9340 (2005)

    Article  CAS  Google Scholar 

  40. Gu, X., Mathias, E.V., Nguyen, K.T.H., Ba, Y.: Structural characterization and diffusional analysis of the inclusion complexes of fluoroadamantane with b-cyclodextrin and its derivatives studied via 1H, 13C and 19F NMR spectroscopy. J. Incl. Phenom. Macrocycl. Chem. 76, 427–441 (2013)

    Article  CAS  Google Scholar 

  41. Harada, A., Li, J., Kamachi, M.: Preparation and properties of inclusion complexes of Poly(ethy1ene glycol) with a-Cyclodextrin. Macromolecules 26, 5698–5703 (1993)

    Article  CAS  Google Scholar 

  42. Harada, A., Kamachi, M.: Complex formation between cyclodextrin and poly(propylene glycol). J. Chem. Soc., Chem. Commun. (1990). https://doi.org/10.1039/c39900001322

    Article  Google Scholar 

Download references

Acknowledgements

Funded by the NSF grant 1011836, and the Provost’s Faculty Fellow Award of California State University, Los Angeles.

Author information

Authors and Affiliations

Authors

Contributions

YB designed the chemical synthesis procedure and acquired research funding for carrying out this project. KN designed the chemical synthesis procedure and carried out the experiments. YB wrote the main manuscript text. KN prepared the Figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yong Ba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 458 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, K.T.H., Ba, Y. Synthesis and NMR characterization of PEGylated β-cyclodextrins. J Incl Phenom Macrocycl Chem 103, 213–222 (2023). https://doi.org/10.1007/s10847-023-01188-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-023-01188-z

Keywords

Navigation