Skip to main content

Advertisement

Log in

Electrochemical sensor for determination of aging state at single cell level under different pressures of cell capturing

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Although aging is a strong and independent predictor of cardiovascular disease, an effective method to evaluate the degree of aging has yet to be reported. Here, we present a straightforward approach to determine aging in a rapid and quantitative manner, using a microfluidic-based electrochemical sensor equipped with a flexible membrane actuator. The flexible membrane in the sensor captures single endothelial cells of various ages (3, 4, and 18 month-old) under different cell capturing pressures (250, 300, and 350 kPa). The sensing electrodes in the sensor measure electrochemical impedance spectra of each cell group in terms of resistance and reactance. An optimal condition showing significant differences in resistance and reactance between different age groups was experimentally determined at a frequency of 1 MHz and a pressure of 350 kPa (p < 0.001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Levine, M.E.: Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? J. Gerontol A. Biomed. Sci. Med Sci. 68(6), 667–674 (2013)

    Article  Google Scholar 

  2. Lakatta, E.G.: So! What’s aging? Is cardiovascular aging a disease? J. Mol. Cell. Cardiol. 83, 1–13 (2015)

    Article  CAS  Google Scholar 

  3. Avezum, A., Makdisse, M., Spencer, F., Gore, J.M., Fox, K.A., Montalescot, G., Eagle, K.A., White, K., Mehta, R.H., Knobel, E., Collet, J.-P.: Impact of age on management and outcome of acute coronary syndrome: observations from the global registry of acute coronary events (GRACE). Am. Heart J. 149, 67–73 (2005)

    Article  Google Scholar 

  4. de Magalhães, J.P., Stevens, M., Thornton, D.: The business of anti-aging science. Trends Biotechnol. 35, 1062–1073 (2017)

    Article  Google Scholar 

  5. Hartshorne, J.K., Germine, L.T.: When does cognitive functioning peak? The asynchronous rise and fall of different cognitive abilities across the life span. Psychol. Sci. 26, 433–443 (2015)

    Article  Google Scholar 

  6. Belsky, D.W., Caspi, A., Houts, R., Cohen, H.J., Corcoran, D.L., Danese, A., Harrington, H., Israel, S., Levine, M.E., Schaefer, J.D.: Quantification of biological aging in young adults. Proc. Natl. Acad. Sci. USA 112(30), E4104–E4110 (2015)

    Article  CAS  Google Scholar 

  7. Abete, P., Napoli, C., Santoro, G., Ferrara, N., Tritto, I., Chiariello, M., Rengo, F., Ambrosio, G.: Age-related decrease in cardiac tolerance to oxidative stress. J. Mol. Cell Cardiol. 31, 227–236 (1999)

    Article  CAS  Google Scholar 

  8. Yang, J., Chang, E., Cherry, A.M., Bangs, C.D., Oei, Y., Bodnar, A., Bronstein, A., Chiu, C.P., Herron, G.S.: Human endothelial cell life extension by telomerase expression. J. Biol. Chem. 274, 26141–26148 (1999)

    Article  CAS  Google Scholar 

  9. Brunk, U.T., Terman, A.: The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur. J. Biochem. 269, 1996–2002 (2002)

    Article  CAS  Google Scholar 

  10. Minamino, T., Miyauchi, H., Yoshida, T., Tateno, K., Kunieda, T., Komuro, I.: Vascular cell senescence and vascular aging. J. Mol. Cell. Cardiol. 36, 175–183 (2004)

    Article  CAS  Google Scholar 

  11. Manke, A., Wang, L., Rojanasakul, Y.: Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed. Res. Int. (2013). https://doi.org/10.1155/2013/942916

    Article  PubMed  PubMed Central  Google Scholar 

  12. Almaida-Pagan, P.F., Lucas-Sanchez, A., Tocher, D.R.: Changes in mitochondrial membrane composition and oxidative status during rapid growth, maturation and aging in zebrafish Danio rerio. Biochim. Biophys. Acta 1841, 1003–1011 (2014)

    Article  CAS  Google Scholar 

  13. Park, Y., Cha, J.J., Seo, S., Yun, J., Kim, H.W., Park, C., Gang, G., Lim, J., Lee, J.H.: Ex vivo characterization of age-associated impedance changes of single vascular endothelial cells using micro electrical impedance spectroscopy with a cell trap. Biomicrofluidics 10, 014114 (2016)

    Article  Google Scholar 

  14. Barja, G.: Endogenous oxidative stress: relationship to aging, longevity and caloric restriction. Ageing Res. Rev. 1, 397–411 (2002)

    Article  CAS  Google Scholar 

  15. Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O.: A biomarker that identifies senescent human cells in culture and in aging skin in vivo . Proc. Natl. Acad. Sci. USA 92(20), 9363–9367 (1995)

    Article  CAS  Google Scholar 

  16. Mather, K.A., Jorm, A.F., Parslow, R.A., Christensen, H.: Is telomere length a biomarker of aging? A review. J. Gerontol A. Biol. Sci. Med. Sci. 66, 202–213 (2011)

    Article  Google Scholar 

  17. Kang, G., Kim, Y.J., Moon, H.S., Lee, J.W., Yoo, T.K., Park, K., Lee, J.H.: Discrimination between the human prostate normal cell and cancer cell by using a novel electrical impedance spectroscopy controlling the cross-sectional area of a microfluidic channel. Biomicrofluidics 7, 44126 (2013)

    Article  Google Scholar 

  18. Chuang, C.H., Huang, Y.W., Wu, Y.: System-level biochip for impedance sensing and programmable manipulation of bladder cancer cells. Sensors (Basel) 11, 11021–11035 (2011)

    Article  CAS  Google Scholar 

  19. Han, A., Yang, L., Frazier, A.B.: Quantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopy. Clin. Cancer Res. 13, 139–143 (2007)

    Article  Google Scholar 

  20. Cha, J.J., Park, Y., Yun, J., Kim, H.W., Park, C.J., Kang, G., Jung, M., Pak, B., Jin, S.W., Lee, J.H.: Cell electrical Impedance as a novel approach for studies on senescence not based on biomarkers. Biomed. Res. Int. 2016, 8484217 (2016)

    Article  Google Scholar 

  21. Kim, H.W., Park, Y., Yun, J., Lim, J., Lee, J.Z., Shin, D.G., Lee, J.H.: Differentiation between normal and cancerous human urothelial cell lines using micro-electrical impedance spectroscopy at multiple frequencies. J. Med. Biol. Eng. 39, 86–95 (2019)

    Article  Google Scholar 

  22. Spence, R., Gerlach, G., Lawrence, C., Smith, C.: The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. Camb. Philos. Soc. 83, 13–34 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Chonnam National University (Smart Plant Reliability Center) grant funded by the Ministry of Education, South Korea, (2020R1A6C101B197). All correspondence should be addressed to the authors Jung-Joon Cha and Hyeon Woo Kim.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Joon Cha or Hyeon Woo Kim.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

“Dedicated to the memory of Jacques Vicens.”

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Y., Cha, JJ. & Kim, H.W. Electrochemical sensor for determination of aging state at single cell level under different pressures of cell capturing. J Incl Phenom Macrocycl Chem 101, 313–320 (2021). https://doi.org/10.1007/s10847-021-01054-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-021-01054-w

Keywords

Navigation