Skip to main content
Log in

Macrocycles in dual role: ancillary ligands in metal complexes and organocatalysts for the ring-opening polymerization of lactide

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In the twenty-first century, one of the central focus of polymer research in academia and industries is directed towards the design of environmentally-benign materials produced from reagents that have minimal deleterious effects on our environment. The aliphatic polyester PLA is one such example. Due to its biodegradable, biorenewable and biocompatible nature, PLA finds diverse applications, especially in the biomedical field. PLA is exclusively synthesized by the ring-opening polymerization of lactide (cyclic dimer of lactic acid) in the presence of a catalyst. The macrocycles and macrocyclic metal moieties can act as effective catalysts for the polymerization resulting in the formation of PLA with controlled tacticity and predetermined molecular weight. This review reports metal-based catalytic systems supported by porphyrin, calixarene and bispyrrolidine- salan as ancillary ligand and metal-free organocatalyst sparteine for the ROP of LA. The variation in catalytic activity, tacticity of PLA, and PLA's molecular weight distribution by substitutional changes in the catalyst framework have been discussed in detail.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Scheme 3
Scheme 4
Fig. 3
Scheme 5
Scheme 6
Fig. 4
Scheme 7
Scheme 8
Fig. 5
Scheme 9
Scheme 10
Fig. 6
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Fig. 7
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Fig. 8
Fig. 9
Scheme 25
Fig. 10
Scheme 26
Fig. 11
Fig. 12
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Fig.13
Scheme 38
Scheme 39
Scheme 40

Similar content being viewed by others

Change history

Abbreviations

ROP:

Ring Opening Polymerization

LA:

Lactide

PLA:

Polylactide

PGA:

Polyglycolide

PLGA:

Poly Lactic-co-Glycolic-acid

PCL:

Polycaprolactone

PDI:

Polydispersity index

TPPH2 :

Tetraphenylporphyrin

PO:

Propylene oxide

PPO:

Polypropylene oxide

PPN+Cl :

Bis(triphenylphosphine) iminium chloride

CHO:

Cyclohexene oxide

References

  1. Chen, G.Q., Patel, M.K.: Plastics derived from biological sources: present and future: a technical and environmental review. Chem. Rev. 112, 2082–2099 (2012)

    CAS  PubMed  Google Scholar 

  2. Dechy-Cabaret, O., Martin-Vaca, B., Bourissou, D.: Controlled ring-opening polymerization of lactide and glycolide. Chem. Rev. 104, 6147–6176 (2004)

    CAS  PubMed  Google Scholar 

  3. Rhim, J.W., Park, H.M., Ha, C.S.: Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 38, 1629–1652 (2013)

    CAS  Google Scholar 

  4. Hayashi, T.: Biodegradable polymers for biomedical uses. Prog. Polym. Sci. 19, 663–702 (1994)

    CAS  Google Scholar 

  5. Chiellini, E., Solaro, R.: Biodegradable polymeric materials. Adv. Mater. 8, 305–313 (1996)

    CAS  Google Scholar 

  6. Ikada, Y., Tsuji, H.: Biodegradable polyesters for medical and ecological applications. Macromol. Rapid Commun. 21, 117–132 (2000)

    CAS  Google Scholar 

  7. Sinclair, R.G.: The case for polylactic acid as a commodity packaging plastic. J Mass Spec-Pure Appl Chem 33, 585–597 (1996)

    Google Scholar 

  8. Ahmed, J., Varshney, S.K.: Polylactides—chemistry, properties and green packaging technology: a review. Int. J. Food Prop. 14, 37–58 (2011)

    CAS  Google Scholar 

  9. Bogaert, J.C., Coszach, P.: Poly (lactic acids): a potential solution to plastic waste dilemma. Macromol. Symp. 153, 287–303 (2000)

    CAS  Google Scholar 

  10. Cheng, Y., Deng, S., Chen, P., Ruan, R.: Polylactic acid (PLA) synthesis and modifications: a review. Front Chem China 4, 259–264 (2009)

    Google Scholar 

  11. Hu, Y., Daoud, W.A., Cheuk, K.K.L., Lin, C.S.K.: Newly developed techniques on polycondensation, ring-opening polymerization and polymer modification: Focus on poly (lactic acid). Materials 9, 133 (2016)

    PubMed Central  Google Scholar 

  12. Stanford, M.J., Dove, A.P.: Stereocontrolled ring-opening polymerisation of lactide. Chem. Soc. Rev. 39, 486–494 (2010)

    CAS  PubMed  Google Scholar 

  13. Sarazin, Y., Carpentier, J.F.: Discrete cationic complexes for ring-opening polymerization catalysis of cyclic esters and epoxides. Chem. Rev. 115, 3564–3614 (2015)

    CAS  PubMed  Google Scholar 

  14. Dagorne, S., Fliedel, C.: Organoaluminum species in homogeneous polymerization catalysis. Top. Organomet. Chem. 41, 125–172 (2013)

    CAS  Google Scholar 

  15. Ghosh, S., Gowda, R.R., Jagan, R., Chakraborty, D.: Gallium and indium complexes containing the bis (imino) phenoxide ligand: synthesis, structural characterization and polymerization studies. Dalton Trans. 44, 10410–10422 (2015)

    CAS  PubMed  Google Scholar 

  16. Mandal, M., Monkowius, U., Chakraborty, D.: Synthesis and structural characterization of titanium and zirconium complexes containing half-salen ligands as catalysts for polymerization reactions. New J. Chem. 40, 9824–9839 (2016)

    CAS  Google Scholar 

  17. O’Keefe, B.J., Hillmyer, M.A., Tolman, W.B.: Polymerization of lactide and related cyclic esters by discrete metal complexes. J. Chem. Soc. Dalton Trans. 15, 2215–2224 (2001)

    Google Scholar 

  18. Nederberg, F., Connor, E.F., Möller, M., Glauser, T., Hedrick, J.L.: New paradigms for organic catalysts: the first organocatalytic living polymerization. Angew. Chem. Int. Ed. 40, 2712–2715 (2001)

    CAS  Google Scholar 

  19. Zhang, L., Nederberg, F., Messman, J.M., Pratt, R.C., Hedrick, J.L., Wade, C.G.: Organocatalytic stereoselective ring-opening polymerization of lactide with dimeric phosphazene bases. J. Am. Chem. Soc. 129, 12610–12611 (2007)

    CAS  PubMed  Google Scholar 

  20. Hormnirun, P., Marshall, E.L., Gibson, V.C., Pugh, R.I., White, A.J.P.: Study of ligand substituent effects on the rate and stereoselectivity of lactide polymerization using aluminumsalen-type initiators. Proc. Natl. Acad. Sci. U. S. A. 103, 15343–15348 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Qian, F., Liu, K., Ma, H.: Amidinate aluminium complexes: synthesis, characterization and ring-opening polymerization of rac-lactide. Dalton Trans. 39, 8071–8083 (2010)

    CAS  PubMed  Google Scholar 

  22. Stasiw, D.E., Luke, A.M., Rosen, T., League, A.B., Mandal, M., Neisen, B.D., Cramer, C.J., Kol, M., Tolman, W.B.: Mechanism of the polymerization of rac-lactide by fast zinc alkoxide catalysts. Inorg. Chem. 56, 14366–14372 (2017)

    CAS  PubMed  Google Scholar 

  23. Pedersen, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 2495–2496 (1967)

    CAS  Google Scholar 

  24. Cram, D.J., Cram, J.M.: Host-guest chemistry. Science 183, 803–809 (1974)

    CAS  PubMed  Google Scholar 

  25. Lehn, J.M.: Supramolecular Chemistry: Concepts and Perspectives. VCH, Weinheim (1995)

    Google Scholar 

  26. Battersby, A.R., Fookes, C.J., Matcham, G.W., McDonald, E.: Biosynthesis of the pigments of life: formation of the macrocycle. Nature 285, 17–21 (1980)

    CAS  PubMed  Google Scholar 

  27. Mokhtari, B., Pourabdollah, K., Dallali, N.: A review of calixarene applications in nuclear industries. J. Radioanal. Nucl. Chem. 287, 921–934 (2011)

    CAS  Google Scholar 

  28. Nimse, S.B., Kim, T.: Biological applications of functionalized calixarenes. Chem. Soc. Rev. 42, 366–386 (2013)

    CAS  PubMed  Google Scholar 

  29. Redshaw, C.: Coordination chemistry of the larger calixarenes. Coord. Chem. Rev. 244, 45–70 (2003)

    CAS  Google Scholar 

  30. O’Keefe, B.J., Hillmyer, M.A., Tolman, W.B.: Polymerization of lactide and related cyclic esters by discrete metal complexes. J. Chem. Soc. Dalton Trans. (2001). https://doi.org/10.1039/b104197p

    Article  Google Scholar 

  31. Amgoune, A., Thomas, C.M., Carpentier, J.F.: Controlled ring-opening polymerization of lactide by group 3 metal complexes. Pure Appl. Chem. 79, 2013–2030 (2007)

    CAS  Google Scholar 

  32. Dos Santos Vieira, I., Herres-Pawlis, S.: Lactide Polymerisation with Complexes of Neutral N-Donors–New Strategies for Robust Catalysts. Eur. J. Inorg. Chem. 2012, 765–774 (2012)

    Google Scholar 

  33. Kremer, A.B., Mehrkhodavandi, P.: Dinuclear catalysts for the ring opening polymerization of lactide. Coord. Chem. Rev. 380, 35–57 (2019)

    CAS  Google Scholar 

  34. Sauer, A., Kapelski, A., Fliedel, C., Dagorne, S., Kol, M., Okuda, J.: Structurally well-defined group 4 metal complexes as initiators for the ring-opening polymerization of lactide monomers. Dalton Trans. 42, 9007–9023 (2013)

    CAS  PubMed  Google Scholar 

  35. Wheaton, C.A., Hayes, P.G.: Designing cationic zinc and magnesium catalysts for coordination–insertion polymerization of lactide. Comments Inorg. Chem. 32, 127–162 (2011)

    CAS  Google Scholar 

  36. Chisholm, M.H.: Concerning the ring-opening polymerization of lactide and cyclic esters by coordination metal catalysts. Pure Appl. Chem. 82, 1647–1662 (2010)

    CAS  Google Scholar 

  37. Osten, K.M., Mehrkhodavandi, P.: Indium catalysts for ring opening polymerization: exploring the importance of catalyst aggregation. Acc. Chem. Res. 50, 2861–2869 (2017)

    CAS  PubMed  Google Scholar 

  38. Sergeeva, E., Kopilov, J., Goldberg, I., Kol, M.: 2, 2′-Bipyrrolidine versus 1, 2-Diaminocyclohexane as Chiral Cores for Helically Wrapping Diamine−Diolate Ligands. Inorg. Chem. 48, 8075–8077 (2009)

    CAS  PubMed  Google Scholar 

  39. Jiang, Z., Zhao, J., Zhang, G.: Ionic organocatalyst with a urea anion and Tetra-n-butyl ammonium cation for rapid, selective, and versatile ring-opening polymerization of lactide. ACS Macro Lett. 8, 759–765 (2019)

    CAS  Google Scholar 

  40. Engel, J., Cordellier, A., Huang, L., Kara, S.: Enzymatic Ring-Opening Polymerization of Lactones: Traditional Approaches and Alternative Strategies. ChemCatChem 11, 4983–4997 (2019)

    CAS  Google Scholar 

  41. Kamber, N.E., Jeong, W., Waymouth, R.M., Pratt, R.C., Lohmeijer, B.G.G., Hedrick, J.L.: Organocatalytic ring-opening polymerization. Chem. Rev. 107, 5813–5840 (2007)

    CAS  PubMed  Google Scholar 

  42. Mezzasalma, L., Dove, A.P., Coulembier, O.: Organocatalytic ring-opening polymerization of L-lactide in bulk: A long standing challenge. Eur. Polym. J. 95, 628–634 (2017)

    CAS  Google Scholar 

  43. Pothupitiya, J.U., Dharmaratne, N.U., Jouaneh, T.M.M., Fastnacht, K.V., Coderre, D.N., Kiesewetter, M.K.: H-Bonding Organocatalysts for the Living, Solvent-Free Ring-Opening Polymerization of Lactones: Toward an All-Lactones. All-Conditions Approach. Macromolecules 50, 8948–8954 (2017)

    CAS  Google Scholar 

  44. Lin, B., Waymouth, R.M.: Organic ring-opening polymerization catalysts: reactivity control by balancing acidity. Macromolecules 51, 2932–2938 (2018)

    CAS  Google Scholar 

  45. Ottou, W.N., Sardon, H., Mecerreyes, D., Vignolle, J., Taton, D.: Update and challenges in organo-mediated polymerization reactions. Prog. Polym. Sci. 56, 64–115 (2016)

    CAS  Google Scholar 

  46. Zhang, D., Zi, G.: N-heterocyclic carbene (NHC) complexes of group 4 transition metals. Chem. Soc. Rev. 44, 1898–1921 (2015)

    CAS  PubMed  Google Scholar 

  47. Wink, M., Meißner, C., Witte, L.: Patterns of quinolizidine alkaloids in 56 species of the genus Lupinus. Phytochemistry 38, 139–153 (1995)

    CAS  Google Scholar 

  48. Tempelaar, S., Mespouille, L., Dubois, P., Dove, A.P.: Organocatalytic synthesis and postpolymerization functionalization of allyl-functional poly (carbonate) s. Macromolecules 44, 2084–2091 (2011)

    CAS  Google Scholar 

  49. Mostovaya, O.A., Gorbachuk, V.V., Padnya, P.L., Vivilova, A.A., Evtugyn, G.A., Stoikov, I.I.: Modification of oligo- and polylactides with macrocyclic fragments: synthesis and properties, p. 7. Front, Chem (2019)

    Google Scholar 

  50. Gorbachuk, V.V., Padnya, P.L., Mostovaya, O.A., Gerasimov, A.V., Stoikov, I.I.: Towards novel functional polymers: Ring-opening polymerization of L-lactide with p-tert-butylthiacalix[4]arene derivatives. React. Funct. Polym. 150, 104546 (2020)

    CAS  Google Scholar 

  51. Dubois, P., Jacobs, C., Jérôme, R., Teyssie, P.: Macromolecular engineering of polylactones and polylactides. 4. Mechanism and kinetics of lactide homopolymerization by aluminumisopropoxide. Macromolecules 24, 2266–2270 (1991)

    CAS  Google Scholar 

  52. Imran, M., Ramzan, M., Qureshi, A.K., Khan, M.A., Tariq, M.: Emerging applications of porphyrins and metalloporphyrins in biomedicine and diagnostic magnetic resonance imaging. Biosensors 8, 95 (2018)

    CAS  PubMed Central  Google Scholar 

  53. Trofimoff, L., Aida, T., Inoue, S.: Formation of poly (lactide) with controlled molecular weight. Polymerization of lactide by aluminum porphyrin. Chem. Lett. 16, 991–994 (1987)

    Google Scholar 

  54. Li, D., Gao, B., Duan, Q.: Syntheses of biodegradable and biorenewable polylactides initiated by aluminum complexes bearing porphyrin derivatives by the ring-opening polymerization of lactides. J Biomat Sci-Polym E 30, 846–860 (2019)

    CAS  Google Scholar 

  55. Balasanthiran, V., Chatterjee, C., Chisholm, M.H., Harrold, N.D., RajanBabu, T.V., Warren, G.A.: Coupling of propylene oxide and lactide at a porphyrin chromium (III) center. J. Am. Chem. Soc. 137, 1786–1789 (2015)

    CAS  PubMed  Google Scholar 

  56. Summerville, D.A., Jones, R.D., Hoffman, B.M., Basolo, F.: Chromium (III) porphyrins. Chemical and spectroscopic properties of chloro-meso-tetraphenylporphinatochromium (III) in nonaqueous solutions. J. Am. Chem. Soc. 99, 8195–8202 (1977)

    CAS  PubMed  Google Scholar 

  57. Chatterjee, C., Chisholm, M.H.: Ring-Opening Polymerization Reactions of Propylene Oxide Catalyzed by Porphyrin Metal (3+) Complexes of Aluminum. Chromium and Cobalt. Chem. Rec. 13, 549–560 (2013)

    CAS  PubMed  Google Scholar 

  58. Anker, M., Balasanthiran, C., Balasanthiran, V., Chisholm, M.H., Jayaraj, S., Mathieu, K., Piromjitpong, P., Praban, P., Raya, B., Simonsick, W.J.: A new route for the preparation of enriched iso-polylactide from rac-lactide via a Lewis acid catalyzed ring-opening of an epoxide. Dalton Trans. 46, 5938–5945 (2017)

    CAS  PubMed  Google Scholar 

  59. Praban, S., Piromjitpong, P., Balasanthiran, V., Jayaraj, S., Chisholm, M.H., Tantirungrotechai, J., Phomphrai, K.: Highly efficient metal (III) porphyrin and salen complexes for the polymerization of rac-lactide under ambient conditions. Dalton Trans. 48, 3223–3230 (2019)

    CAS  PubMed  Google Scholar 

  60. Li, D., Gao, B., Duan, Q.: Preparation of star-shaped functionalized polylactides by metal porphyrin complexes as both catalysts and cocatalysts. J. Porphyrins Phthalocyanines 23, 1020–1027 (2019)

    CAS  Google Scholar 

  61. Li, Y., Zhao, K.Q., Redshaw, C., Ortega, B.A.M., Nuñez, A.Y., Hanna, T.A.: Coordination chemistry and applications of phenolic calixarene–metal complexes. PATAI’S Chemistry of Functional Groups (2009). https://doi.org/10.1002/9780470682531.pat0616

    Article  Google Scholar 

  62. Bukhaltsev, E., Frish, L., Cohen, Y., Vigalok, A.: Single-site catalysis by bimetallic zinc calixarene inclusion complexes. Org. Lett. 7, 5123–5126 (2005)

    CAS  PubMed  Google Scholar 

  63. Frediani, M., Sémeril, D., Mariotti, A., Rosi, L., Frediani, P., Rosi, L., Matt, D., Toupet, L.: Ring Opening Polymerization of Lactide under Solvent-Free Conditions Catalyzed by a Chloro titanium Calix [4] arene Complex. Macromol. Rapid Commun. 29, 1554–1560 (2008)

    CAS  Google Scholar 

  64. Frediani, M., Sémeril, D., Matt, D., Rosi, L., Frediani, P., Rizzolo, F., Papini, A.M.: Ring-opening polymerisation of rac-lactide using a calix 4 arene-based titanium (IV) complex. Int J. Polym. Sci (2010). https://doi.org/10.1155/2010/490724

    Article  Google Scholar 

  65. Walton, M.J., Lancaster, S.J., Redshaw, C.: Highly Selective and Immortal Magnesium Calixarene Complexes for the Ring-Opening Polymerization of rac-Lactide. ChemCatChem 6, 1892–1898 (2014)

    CAS  Google Scholar 

  66. Mayilmurugan, R., Traar, P., Schachner, J.A., Volpe, M., Mösch-Zanetti, N.C.: Dioxidomolybdenum (VI) Complexes Containing Ligands with the Bipyrrolidine Backbone as Efficient Catalysts for Olefin Epoxidation. Eur. J. Inorg. Chem. 2013, 3664–3670 (2013)

    CAS  Google Scholar 

  67. Hador, R., Botta, A., Venditto, V., Lipstman, S., Goldberg, I., Kol, M.: The Dual-Stereocontrol Mechanism: Heteroselective Polymerization of rac-Lactide and Syndioselective Polymerization of meso-Lactide by Chiral AluminumSalan Catalysts. Angew. Chem. Int. Ed. 58, 14679–14685 (2019)

    CAS  Google Scholar 

  68. Jones, M.D., Hancock, S.L., McKeown, P., Schäfer, P.M., Buchard, A., Thomas, L.H., Lowe, J.P.: Zirconium complexes of bipyrrolidine derived salan ligands for the isoselective polymerisation of rac-lactide. Chem. Commun. 50, 15967–15970 (2014)

    CAS  Google Scholar 

  69. Kaminsky, W., Arndt, M.: 17. Mechanism of the First Steps of the Isotactic Polymerization with Metallocene Catalysts. In: Kaminsky, W. (ed.) Studies in Surface Science and Catalysis, vol. 89, pp. 179–192. Elsevier, Amsterdam (1994)

    Google Scholar 

  70. Jones, M.D., Brady, L., McKeown, P., Buchard, A., Schäfer, P.M., Thomas, L.H., Lowe, J.P.: Metal influence on the iso-and hetero-selectivity of complexes of bipyrrolidine derived salan ligands for the polymerisation of rac-lactide. Chem. Sci. 6, 5034–5039 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Addison, A.W., Rao, T.N., Reedijk, J., van Rijn, J., Verschoor, G.C.: Synthesis, structure, and spectroscopic properties of copper (II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua [1, 7-bis (N-methylbenzimidazol-2′-yl)-2, 6-dithiaheptane] copper (II) perchlorate. J. Chem. Soc. Dalton Trans. (1984). https://doi.org/10.1039/DT9840001349

    Article  Google Scholar 

  72. Yang, L., Powell, D.R., Houser, R.P.: Structural variation in copper (I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ 4. Dalton Trans (2007). https://doi.org/10.1039/B617136B

    Article  PubMed  Google Scholar 

  73. Quilter, H.C., Drewitt, R.H., Mahon, M.F., Kociok-Köhn, G., Jones, M.D.: Synthesis of Li (I), Zn (II) and Mg (II) complexes of amine bis (phenolates) and their exploitation for the ring opening polymerisation of rac-lactide. J. Organomet. Chem. 848, 325–331 (2017)

    CAS  Google Scholar 

  74. Beament, J., Kociok-Köhn, G., Jones, M.D., Buchard, A.: Bipyrrolidinesalan alkoxide complexes of lanthanides: synthesis, characterisation, activity in the polymerisation of lactide and mechanistic investigation by DOSY NMR. Dalton Trans. 47, 9164–9172 (2018)

    CAS  PubMed  Google Scholar 

  75. Beament, J., Mahon, M.F., Buchard, A., Jones, M.D.: Salan group 13 complexes–structural study and lactide polymerisation. New J. Chem. 41, 2198–2203 (2017)

    CAS  Google Scholar 

  76. Press, K., Goldberg, I., Kol, M.: Mechanistic insight into the stereochemical control of lactide polymerization by salan–aluminum catalysts. Angew. Chem. Int. Ed. 54, 14858–14861 (2015)

    CAS  Google Scholar 

  77. Beament, J., Mahon, M.F., Buchard, A., Jones, M.D.: Aluminum complexes of monopyrrolidine ligands for the controlled ring-opening polymerization of lactide. Organometallics 37, 1719–1724 (2018)

    CAS  Google Scholar 

  78. Villalpando-Vargas, F., Medina-Ceja, L.: Sparteine as an anticonvulsant drug: Evidence and possible mechanism of action. Seizure 39, 49–55 (2016)

    PubMed  Google Scholar 

  79. Chen, S., Liu, Y., Li, Z., Wang, X., Dong, H., Sun, H., Yang, K., Gebru, H., Guo, K.: H-bonding binary organocatalysis promoted amine-initiated ring-opening polymerizations of lactide from polysarcosine to diblock copolymers. Eur. Polym. J. 97, 389–396 (2017)

    CAS  Google Scholar 

  80. Liu, J., Chen, C., Li, Z., Wu, W., Zhi, X., Zhang, Q., Wu, H., Wang, X., Cui, S., Guo, K.: A squaramide and tertiary amine: an excellent hydrogen-bonding pair organocatalyst for living polymerization. Polym. Chem. 6, 3754–3757 (2015)

    CAS  Google Scholar 

  81. Pratt, R.C., Lohmeijer, B.G.G., Long, D.A., Lundberg, P.N.P., Dove, A.P., Li, H., Wade, C.G., Waymouth, R.M., Hedrick, J.L.: Exploration, Optimization, and Application of Supramolecular Thiourea−Amine Catalysts for the Synthesis of Lactide (Co) polymers. Macromolecules 39, 7863–7871 (2006)

    CAS  Google Scholar 

  82. Coulembier, O., De Winter, J., Josse, T., Mespouille, L., Gerbaux, P., Dubois, P.: One-step synthesis of polylactide macrocycles from sparteine-initiated ROP. Polym. Chem. 5, 2103–2108 (2014)

    CAS  Google Scholar 

  83. Thomas, C., Milet, A., Peruch, F., Bibal, B.: Activation of carbonyl bonds by quaternary ammoniums and a (Na+: crown-ether) complex: investigation of the ring-opening polymerization of cyclic esters. Polym. Chem. 4, 3491–3498 (2013)

    CAS  Google Scholar 

  84. Eisenreich, F., Kathan, M., Dallmann, A., Ihrig, S.P., Schwaar, T., Schmidt, B.M., Hecht, S.: A photoswitchable catalyst system for remote-controlled (co) polymerization in situ. Nat. Catal. 1, 516–522 (2018)

    CAS  Google Scholar 

  85. Zhang, D., Jardel, D., Peruch, F., Calin, N., Dufaud, V., Dutasta, J.P., Martinez, A., Bibal, B.: Azaphosphatranes as Hydrogen-Bonding Organocatalysts for the Activation of Carbonyl Groups: Investigation of Lactide Ring-Opening Polymerization. Eur. J. Org. Chem. 2016, 1619–1624 (2016)

    CAS  Google Scholar 

Download references

Funding

Funding was provided by UGC-ISF Grant No. 6-2/2018(IC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis Chakraborty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to a retrospective Open Access cancellation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S.S., Sarkar, S. & Chakraborty, D. Macrocycles in dual role: ancillary ligands in metal complexes and organocatalysts for the ring-opening polymerization of lactide. J Incl Phenom Macrocycl Chem 100, 1–36 (2021). https://doi.org/10.1007/s10847-021-01045-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-021-01045-x

Keywords

Navigation