Skip to main content
Log in

Investigation of indole chalcones encapsulation in β-cyclodextrin: determination of stoichiometry, binding constants and thermodynamic parameters

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The study focuses on the formation of inclusion complexes of indole chalcone (IC) derivatives with β-cyclodextrin (β-CD), which involves absorption and steady state fluorescence spectroscopies. The formation of inclusion complexes is validated by increase in their absorbance and fluorescence intensity as well as the blue shift with increase in the concentration of β-CD in the aqueous solution. The stoichiometries and binding constants (Kin) of these complexes have been investigated by monitoring their absorbance and fluorescence spectral profiles. The data are analyzed by Benesi–Hildebrand plots as well as Job’s method, which indicate 1:1 stoichiometry of IC:β-CD complexes. Fluorescence measurements are also used to investigate the effect of temperature on the stability of inclusion complexes. Stability of IC:β-CD complexes is significantly affected with variation in substituents on the phenyl ring and temperature. It is observed that the stability of the inclusion complex decreases with increase in temperature; Kin(293 K) > Kin(298 K) > Kin(308 K) > Kin(318 K). All the experimental results and the geometrical data obtained using PM3 semiempirical method illustrate the partial inclusion of IC derivatives from the phenyl ring side in β-CD cavity. The binding process of IC derivatives with β-CD is found to be exothermic in nature and seems to be controlled by electrostatic and hydrophobic forces. The binding free energies calculated using semiemprical PM3 method for IC:β-CD complexes are found to be in the order: I < OH–I < Me–I < OMe–I < NH2–I, which largely supports the findings based on the experimental binding constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Maria, K., Dimitra, H.L., Maria, G.: Synthesis and anti-inflammatory activity of chalcones and related mannich bases. Med. Chem. 4(6), 586–596 (2008)

    Article  CAS  Google Scholar 

  2. Cocconcelli, G., Diodato, E., Caricasole, A., Gaviraghi, G., Genesio, E., Ghiron C., Magnoni, L., Pecchioli, E., Plazzib, P.V., Terstappen, G.C.: Aryl azoles with neuroprotective activity-parallel synthesis and attempts at target identification. Bioorg. Med. Chem. 16(4), 2043–2052 (2008)

    Article  CAS  Google Scholar 

  3. Budakoti, A., Bhat, A.R., Athar, F., Azam, A.: Syntheses and evaluation of 3-(3-bromo phenyl)-5-phenyl-1-(thiazolo [4,5-b] quinoxaline-2-yl)-2-pyrazoline derivatives. Eur. J. Med. Chem. 43(8), 1749–1757 (2008)

    Article  CAS  Google Scholar 

  4. Kumar, D., Kumar, N.M., Akamatsu, K., Kusaka, E., Harada, H., Ito, T.: Synthesis and biological evaluation of indolyl chalcones as antitumor agents. Bioorg. Med. Chem. Lett. 20(13), 3916–3919 (2010)

    Article  CAS  Google Scholar 

  5. Saroj, M.K., Sharma, N., Rastogi, R.C.: Solvent effect profiles of absorbance and fluorescence spectra of some indole based chalcones. J. Fluoresc. 21, 2213–2227 (2011)

    Article  CAS  Google Scholar 

  6. Saroj, M.K., Sharma, N., Rastogi, R.C.: Photophysical study of some 3-benzoylmethyleneindol-2-ones and estimation of ground and excited states dipole moments from solvatochromic methods using solvent polarity parameters. J. Mol. Struct. 1012, 73–86 (2012)

    Article  CAS  Google Scholar 

  7. López, S., Castelli, M., Zacchino, S., Domínguez, J., Lobo, G., Charris-Charris, J., Cortés, J., Ribas, J., Devia, C., Rodríguez, A.: In vitro antifungal evaluation and structure-activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall. Bioorg. Med. Chem. 9, 1999–2013 (2001)

    Article  Google Scholar 

  8. Singh, P., Anand, A., Kumar, V.: Recent developments in biological activities of chalcones: a mini review. Eur. J. Med. Chem. 85, 758–777 (2014)

    Article  CAS  Google Scholar 

  9. Gill, K.K., Kaddoumi, A., Nazzal, S.: PEG-lipid micelles as drug carriers: physiochemical attributes, formulation principles and biological implication. J. Drug Target. 23, 222–231 (2015)

    Article  CAS  Google Scholar 

  10. Kuo, Y.-C., Lin, C.-C.: Rescuing apoptotic neurons in alzheimer’s disease using wheat germ agglutinin-conjugated and cardiolipin-conjugated liposomes with encapsulated nerve growth factor and curcumin. Int. J. Nanomed. 10, 2653–2672 (2015)

    Article  CAS  Google Scholar 

  11. Lao, W., Song, C., You, J., Ou, Q.: Fluorescence and β-cyclodextrin inclusion properties of three carbazole-based dyes. Dyes Pigments. 95(3), 619–626 (2012)

    Article  CAS  Google Scholar 

  12. Hazra, S., Hossain, M., Kumar, G.S.: Studies on α-, β-, and γ-cyclodextrin inclusion complexes of isoquinoline alkaloids berberine, palmatine and coralyne. J. Incl. Phenom. Macrocycl. Chem. 78(1–4), 311–323 (2014)

    Article  CAS  Google Scholar 

  13. Li, J., Zhang, H., Yan, Y., Sun, S.: Study of the inclusion complex and antioxidating activity of Wogonin with b-cyclodextrin and hydroxypropylcyclodextrin. J. Inclus. Phenom. Macrocycl. Chem. 84(1–2), 115–120 (2016)

    Article  CAS  Google Scholar 

  14. Guzzo, T., Mandaliti, W., Nepravishta, R., Aramini, A., Bodo, E., Daidone, I., Allegretti, M., Topai, A., Paci, M.: Conformational change in the mechanism of inclusion of ketoprofen in β-cyclodextrin: NMR Spectroscopy, Ab Initio calculations, molecular dynamics simulation and photoreactivity. J. Phys. Chem. B 120(41), 10668–10678 (2016)

    Article  CAS  Google Scholar 

  15. Rajamohan, R., Nayaki, K., Swaminathan, S.M.: Photophysical and photoprototropic characteristics of 2-aminobenzothiazole in β-cyclodextrin medium. J. Fluoresc. 27(2), 689–699 (2017)

    Article  CAS  Google Scholar 

  16. Wang, Q.Q., Day, V.W., Bowman-James, K.: Chemistry and structure of a host-guest relationship: the power of NMR and X-ray diffraction in tandem. J. Am. Chem. Soc. 135(1), 392–399 (2013)

    Article  CAS  Google Scholar 

  17. Guo, X., Jia, X., Du, J., Xiao, L., Li, F., Liao, L., Liu, L.: Host-guest chemistry of cyclodextrin carbamates and cellulose derivatives in aqueous solution. Carbohyd. Polym. 98(1), 982–987 (2013)

    Article  CAS  Google Scholar 

  18. Kim, T.K., Yoo, H.H.: Anticancer effect of docetaxel/hydroxypropyl-beta-cyclodextrin complex without histamine release. J. Incl. Phenom. Macrocycl. 83(3–4), 355–361 (2015)

    Article  CAS  Google Scholar 

  19. Lutfor, M.R., Hegde, G., Kumar, S., Tschierske, C., Chigrinov, V.G.: Synthesis and characterization of bent-shaped azobenzene monomers: guest-host effects in liquid crystals with azo dyes for optical image storage devices. Opt. Mater. 32(1), 176–183 (2009)

    Article  CAS  Google Scholar 

  20. Haino, T.: Supramolecular chemistry: from host-guest complexes to supramolecular polymers. Yuki Gosei Kagaku Kyokaishi 71(11), 1172–1181 (2013)

    Article  CAS  Google Scholar 

  21. Fan, H., Xing, R., Wang, X., Xu, Y., Wang, Q., He, P., Fang, Y.: A host-guest-recognition-based electrochemical sensor for sequence-specific DNA detection. Electroanalysis 22(15), 1781–1786 (2010)

    Article  CAS  Google Scholar 

  22. Jankowska, K.I., Pagba, C.V., Piatnitski Chekler, E.L., Deshayes, K., Piotrowiak, P.: Electrostatic docking of a supramolecular host-guest assembly to Cytochrome C probed by bidirectional photoinduced electron transfer. J. Am. Chem. Soc. 132(46), 16423–16431 (2010)

    Article  CAS  Google Scholar 

  23. Rajamohan, R., Nayaki, S.K., Sivakumar, K., Swaminathan, M.: Photophysical and photoprototropic characteristics of phenothiazine in aqueous and β-cyclodextrin media. J. Lumin. 168, 245–255 (2015)

    Article  CAS  Google Scholar 

  24. Singh, S., Negi, J.S., Bisht, R., Negi, V., Kasliwal, N., Thakur, V., Upadhyay, A.: Development and evaluation of orodispersible sustained release formulation of amisulpride-g-cyclodextrin inclusion complex. J. Incl. Phenom. Macrocycl. Chem. 78(1–4), 239–247 (2014)

    Article  CAS  Google Scholar 

  25. Tran, C.D., Fendler, J.H.: Photophysical investigations of chiral amine guest-cyclodextrin host interactions and diastereomeric recognition. J. Phys. Chem. 88(10), 2167–2173 (1984)

    Article  CAS  Google Scholar 

  26. Muthu, V.E., Rajamohan, R., Swaminathan, M.: Fluorimetric and prototropic studies on the inclusion complexation of 3,3′-diaminodiphenylsulphone with β-cyclodextrin and its unusual behaviour. Spectrochim. Acta Part A 77(2), 473–477 (2010)

    Article  Google Scholar 

  27. Fontanay, S., Kedzierewicz, F., Duval, R.E., Clarot, I.: Physicochemical and thermodynamic characterization of hydroxy pentacyclic triterpenoic acid/g-cyclodextrin inclusion complexes. J. Incl. Phenom. Macrocycl. Chem. 73(1–4), 341–347 (2012)

    Article  Google Scholar 

  28. Samanta, A., Jana, S., Guchhait, N.: Spectral modulation of a charge transfer reaction of 2-methoxy-4-(N,N-dimethylamino)benzaldehyde inside cyclodextrin nanocage. J. Incl. Phenom. Macrocycl. Chem. 75(1–2), 57–68 (2013)

    Article  CAS  Google Scholar 

  29. Chandrasekaran, S., Sameena, Y., Israel, V.M., Enoch, V.: Modulation of the interaction of Coumarin 7 with DNA by β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 81(1–2), 225–236 (2015)

    Article  CAS  Google Scholar 

  30. Street, K.W. Jr: Cyclodextrin cavity polarity and chromatographic implications. J. Liq. Chromatogr. 10(4), 655–662 (1987)

    Article  CAS  Google Scholar 

  31. Gashnga, P.M., Singh, T.S., Mitra, S.: Modulation of ESIPT fluorescence in o-hydroxy acetophenone derivatives: a comparative study in different bio-mimicking aqueous interfaces. J. Mol. Liq. 218, 549–557 (2016)

    Article  CAS  Google Scholar 

  32. Varghese, B., Al-Busafi, S.N., Suliman, F.E.O., Al-Kindy, S.M.Z.: Tuning the constrained photophysics of a pyrazoline dye 3-naphthyl-1-phenyl-5-(4-carboxyphenyl)-2-pyrazoline inside the cyclodextrin nanocavities: a detailed insight via experimental and theoretical approach. Spectrochim. Acta A 173, 383–389 (2017)

    Article  CAS  Google Scholar 

  33. Benesi, A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)

    Article  CAS  Google Scholar 

  34. Roberts, E.L., Chou, P.T., Alexander, T.A., Agbaria, R.A., Warner, I.M.: Effects of organized media on the excited-state intramolecular proton transfer of 10-Hydroxybenzo[h] quinoline. J. Phys. Chem. 99(15), 5431–5437 (1995)

    Article  CAS  Google Scholar 

  35. Connors, K.A.: Binding Constants: The Measurements of Molecular Complex Stability. Wiley, New York (1987)

    Google Scholar 

  36. Nigam, S., Durocher, G.: Spectral and photophysical studies of inclusion complexes of some neutral 3H-indoles and their cations and anions with β-cyclodextrin. J. Phys. Chem. 100(17), 7135–7142 (1996)

    Article  CAS  Google Scholar 

  37. Munoz de la, P.A., Ndou, T., Zung, J.B., Warner, I.M.: Stoichiometry and formation constants of pyrene inclusion complexes with β- and γ-cyclodextrin. J. Phys. Chem. 95(8), 3330–3334 (1991)

    Article  Google Scholar 

  38. CurveExpert: Professional v1.5.0 documentation © Copyright. Daniel G, Hyams (2011)

  39. Kusumoto, Y.: A spectrofluorimetric method for determining the association constants of pyrene with cyclodextrins based on polarity variation. Chem. Phys. Lett. 136(6), 535–538 (1987)

    Article  CAS  Google Scholar 

  40. Job, P.: Formation and stability of inorganic complexes in solution. Ann. Chim. 9, 113–203 (1928)

    CAS  Google Scholar 

  41. Stewart, J.J.P.: Optimization of parameters for semiempirical methods I. Method J. Comp. Chem. 10(2), 209–220 (1989)

    Article  CAS  Google Scholar 

  42. Stewart, J.J.P.: Optimization of parameters for semiempirical methods III: extension of PM3 to beryllium, magnesium, zinc, gallium, germanium, arsenic, selenium, cadmium, indium, tin, antimony, tellurium, mercury, thallium, lead, and bismuth. J. Comp. Chem. 12(3), 320–341 (1991)

    Article  CAS  Google Scholar 

  43. HyperChem: Release 8.0 Professional. Hypercube, Inc., USA (2011)

  44. Addy, P.: Theoretical and Physical Principles of Organic Reactivity, 1 edn. Wiley-Blackwell, New York (1995)

    Google Scholar 

  45. Jaffé, H.H.: A re-examination of the Hammett equation. Chem. Rev. 53(2), 191–261 (1953)

    Article  Google Scholar 

  46. Kano, K., Veno, Y., Hasimoto, S.: Fluorescence studies on the characterization and solubilizing abilities of sodium dodecyl sulfate, hexadecyltrimethyl ammonium chloride and Triton X-100 micelles. J. Phys. Chem. 89(14), 3161–3166 (1985)

    Article  CAS  Google Scholar 

  47. He, Y., Shen, X.: Interaction between β-cyclodextrin and ionic liquids in aqueous solutions investigated by a competitive method using a substituted 3H-indole probe. J. Photochem. Photobiol. A 197, 253–259 (2008)

    Article  CAS  Google Scholar 

  48. Banica, F.-G.: Chemical Sensors and Biosensors: Fundamentals and Applications. Wiley, Chichester (2012)

    Book  Google Scholar 

  49. Fifere, A., Marangoci, N., Maier, S., Coroaba, A., Maftei, D., Pinteala, M.: Theoretical study on β-cyclodextrin inclusion complexes with propiconazole and protonated propiconazole Beilstein. J. Org. Chem. 8, 2191–2201 (2012)

    CAS  Google Scholar 

  50. Li, S., Purd, W.C.: Cyciodextrins and their applications in analytical chemistry. Chemi. Rev. 92(6), 1457–1470 (1992)

    Article  CAS  Google Scholar 

  51. Jenitia, M.J., Prabhu, A.A.M., Rajendiran, N.: Theoretical study of inclusion complexation of tricyclic antidepressant drugs with β-cyclodextrin. Indian J. Chem. A. 51(12), 1686–1694 (2012)

    Google Scholar 

Download references

Acknowledgements

The financial support from University of Delhi under the Scheme “To strengthen Research and Development Doctoral Research Program” is gratefully acknowledged. Manju K. Saroj is thankful to the University Grants Commission, New Delhi for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh C. Rastogi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 743 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saroj, M.K., Payal, R., Jain, S.K. et al. Investigation of indole chalcones encapsulation in β-cyclodextrin: determination of stoichiometry, binding constants and thermodynamic parameters. J Incl Phenom Macrocycl Chem 90, 305–320 (2018). https://doi.org/10.1007/s10847-018-0782-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-018-0782-4

Keywords

Navigation