Skip to main content
Log in

In silico elucidation of the inclusion phenomenon and permeation behavior of a zidovudine–cyclodextrin complex via static lattice atomistic simulation

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

This study explored the molecular arrangement of the drug molecule zidovudine (AZT) within an inclusion complex of β-cyclodextrin (βCD). The intrinsic mechanistic profiling of the AZT–βCD inclusion complex was investigated using molecular modeling and structurally designed docking studies via molecular mechanics Force-Field simulations. The energetically and geometrically optimized molecular conformations revealed that the AZT molecule was preferentially oriented toward the primary rim of the βCD cavity with the azido group positioned within the cyclodextrin ring. In the second phase of this study, the mechanism of AZT permeability across the transmucosal membrane after inclusion into βCD was elucidated via interaction between βCD and the transmucosal lipid, glycosylceramide (GLC). Interestingly, βCD formed H-bonds with the lipid head groups of GLC via the secondary rim. A systematic merge of these findings elucidated a novel “tunnel model” designated to the trimolecular complex: AZT-1°ring–βCD-2°ring–GLC. The energetic parameters, grid surface area, molecular volume, surface-to-volume-ratio, Log-P, refractivity, and polarizability were computed for the molecular complexes. Computationally, the Molecular Mechanics Assisted Model Building and Energy Refinements (AMBER) algorithm was used to develop a molecular mechanics energy relationship (MMER). The MMER elucidated the role of destabilized bond stretching, angle modification and torsional strain in ionic stabilization of the geometrical complexes through hydrophobic H-bonding and electrostatic interactions. These results provided a novel bonding and non-bonding correlation for the formation and performance of βCD in terms of its role in the prospective permeation modification of the AZT molecule through the transmucosal membrane with an optimum hydrophilic–lipophilic-permeation balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gay, C.L., Cohen, M.S.: Antiretrovirals to prevent HIV infection: pre- and post-exposure prophylaxis. Curr. Infect. Dis. Rep. 10, 323–331 (2008)

    Article  Google Scholar 

  2. Pecková, K., Navrátil, T., Yosypchuk, B., Moreira, J.C., Leandro, K.C., Barek, J.: Voltammetric determination of azidothymidine using silver solid amalgam electrodes. Electroanalysis 21, 1750–1757 (2009)

    Article  Google Scholar 

  3. Weinberg, A., Forster-Harwood, J., Davies, J., McFarland, E. J., Pappas, J., Kinzie, K., Barr, E., Paul, S., Salbenblatt, C., Soda, E., Vazquez, A., Levin, M.J.: Clinical study safety and tolerability of antiretrovirals during pregnancy. Infect. Dis. Obstet. Gynecol. (2011). doi:10.1155/2011/867674

  4. Suwanpidokkul, N., Thongnopnua, P., Umprayn, K.: Transdermal delivery of zidovudine (AZT): the effects of vehicles, enhancers, and polymer membranes on permeation across cadaver pig skin. AAPS PharmSciTech 5, 82–89 (2004)

    Google Scholar 

  5. Scruggs, E.R., Dirks Naylo, A.J.: Mechanisms of zidovudine-induced mitochondrial toxicity and myopathy. Pharmacology 82, 83–88 (2008)

    Article  CAS  Google Scholar 

  6. Kim, J.Y., Yoon, Y.S., Park, K.D., Koo, H.: Myopathy due to chronic clevudine therapy. Korean J. Pathol. 43, 575–579 (2009)

    Article  Google Scholar 

  7. Narishetty, S.T., Panchagnula, R.: Transdermal delivery of zidovudine: effect of terpenes and their mechanism of action. J. Control Release 95, 367–379 (2004)

    Article  CAS  Google Scholar 

  8. Parang, K., Wiebe, L.I., Knaus, E.E.: Novel approaches for designing 5′-O-ester prodrugs of 3′-azido-2′3′-dideoxythymidine (AZT). Curr. Med. Chem. 7, 995–1039 (2000)

    Article  CAS  Google Scholar 

  9. Brewster, M.E., Loftsson, T., Amselem, S., Friedmand, D., Yogev, A., Anderson, W.R., Helton, D.O., Dinculescu, A., Bodor, N., Pop, E.: Formulation development for a zidovudine chemical delivery system 1. Parenteral dosage forms. Int. J. Pharm. 125, 17–30 (1995)

    Article  CAS  Google Scholar 

  10. Amselem, S., Friedman, D., Yogev, A., Anderson, W.R., Helton, D.O., Loftsson, T., Bodor, N., Pop, E., Brewster, M.E.: Formulation development for a zidovudine chemical delivery system 2. Towards oral and non-parenteral dosage forms. Int. J. Pharm. 125, 31–43 (1995)

    Article  CAS  Google Scholar 

  11. Thomas, N.S., Panchagnula, R.: Transdermal delivery of zidovudine: effect of vehicles on permeation across rat skin and their mechanism of action. Eur. J. Pharm. Sci. 18, 71–79 (2003)

    Article  CAS  Google Scholar 

  12. Silion, M., Dascalu, A., Simionescu, B.C., Pinteala, M., Ungurenasu, C.: Synthesis and anti-HIV activity of b-cyclodextrin-C6-sulfate/3-azido-30-deoxythymidine inclusion complex. J. Polym. Sci. A Polym. Chem. 49, 1730–1733 (2011)

    Article  CAS  Google Scholar 

  13. Chung, I., Lee, C.K., Ha, C.K., Cho, W.J.: Syntheses of cyclodextrin–30-azido-30-deoxythymidine conjugates and their sulfates with improved anti-HIV activities. J. Polym. Sci. A Polym. Chem. 44, 295–303 (2006)

    Article  CAS  Google Scholar 

  14. Consuelo, I.D., Jacques, Y., Pizzolato, G.P., Guy, R.H., Falson, F.: Comparison of the lipid composition of porcine buccal and esophageal permeability barriers. Arch. Oral Biol. 50, 981–987 (2005)

    Article  Google Scholar 

  15. Ganem-Quintanar, A., Falson-Rieg, F., Buri, P.: Contribution of lipid components to the permeability barrier of oral mucosa. Eur. J. Pharm. Biopharm. 44, 107–120 (1997)

    Article  CAS  Google Scholar 

  16. Glycosyl Group: IUPAC Compendium of Chemical Terminology, vol. 67, p. 1338 (1995)

  17. Bonnet, P., Jaime, C., Morin-Allory, L.: α, β and γ-Cyclodextrin dimers. Molecular modeling studies by molecular mechanics and molecular dynamics simulations. J. Org. Chem. 66, 689–692 (2001)

    Article  CAS  Google Scholar 

  18. Warhurst, D.C., Craig, J.C., Adagu, I.S., Meyer, D.J., Lee, S.Y.: The relationship of physico-chemical properties and structure to the differential antiplasmodial activity of the cinchona alkaloids. Malaria J. (2001). doi:10.1186/1475-2875-2-26

  19. Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E., De-Bolt, S., Ferguson, D., Seibel, G., Kollman, P.: AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comp. Phys. Commun. 91, 1–41 (1995)

    Article  CAS  Google Scholar 

  20. Kumar, P., Pillay, V., Choonara, Y.E., Modi, G., Naidoo, D., du Toit, L.C.: In silico theoretical molecular modeling for Alzheimer’s disease: the nicotine-curcumin paradigm in neuroprotection and neurotherapy. Int. J. Mol. Sci. 12, 694–724 (2011)

    Article  CAS  Google Scholar 

  21. Shaikh, R.P., Kumar, P., Choonara, Y.E., du Toit, L.C., Pillay, V.: Crosslinked electrospun PVA nanofibrous membranes: elucidation of their physicochemical, physicomechanical and molecular disposition. Biofabrication (2012). doi:10.1088/1758-5082/4/2/025002

  22. Yu, B.Y., Chung, J.W., Kwak, S.Y.: Reduced migration from flexible poly(vinyl chloride) of a plasticizer containing β-cyclodextrin derivative. Environ. Sci. Technol. 42, 7522–7527 (2008)

    Article  CAS  Google Scholar 

  23. Xiao, Y., Lim, H.M., Chung, T.S., Rajagopalan, R.: Acetylation of beta-cyclodextrin surface-functionalized cellulose dialysis membranes with enhanced chiral separation. Langmuir 23, 12990–12996 (2007)

    Article  CAS  Google Scholar 

  24. Másson, M., Sigfusson, S.D., Loftsson, T.: Fish skin as a model membrane to study transmembrane drug delivery with cyclodextrins. J. Incl. Phenom. Macroc. Chem. 44, 177–182 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Research Foundation (NRF) of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viness Pillay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P., Choonara, Y.E., du Toit, L.C. et al. In silico elucidation of the inclusion phenomenon and permeation behavior of a zidovudine–cyclodextrin complex via static lattice atomistic simulation. J Incl Phenom Macrocycl Chem 78, 445–455 (2014). https://doi.org/10.1007/s10847-013-0316-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-013-0316-z

Keywords

Navigation