Skip to main content
Log in

Novel ion recognition systems based on cyclic and acyclic oligo(salen)-type ligands

  • Review Paper
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

This review describes the design of novel ion recognition systems based on salen (H2salen = N,N′-disalicylideneethylenediamine) or related ligands. The phenoxo groups of the salen-based metallohosts play an important role in the ion recognition because the phenoxo groups can further coordinate to metal ions in a bridging fashion. In particular, the integration of two or more salen-type coordination sites in a cyclic fashion is effective for the construction of the metallohosts. They show unique multi-metal complexation behavior and binding selectivities due to the phenoxo-bridged structures. The peripheral salen-type sites are suitable for binding to d-block transition metal ions and the central O6 (or larger) site is for the group 1–3 metals. Acyclic oligo(salen) molecules are also effective for obtaining metallohosts. The metalation of a bis(salen)-type ligand with d-block metals leads to a trinuclear complex with a C-shaped structure, which can selectively recognize Ca2+ and lanthanide(III) ions via a unique metal exchange process. The longer oligo(salen) ligands form a helical structure when they recognize the La3+ or Ba2+ ion in the presence of the zinc(II) ion. The helix inversion behavior of the helical metal complexes due to the labile character of the coordination bonds is successfully utilized for the dynamic helicity control. The transformation of the acyclic ligand into cyclic ones via olefin metathesis significantly changes the binding selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Fig. 2
Scheme 9
Scheme 10
Fig. 3
Scheme 11
Fig. 4
Scheme 12
Scheme 13
Fig. 5
Scheme 14
Fig. 6
Scheme 15
Scheme 16
Scheme 17
Fig. 7
Scheme 18
Fig. 8
Scheme 19
Fig. 9
Scheme 20
Scheme 21
Fig. 10
Scheme 22
Scheme 23
Fig. 11
Fig. 12
Scheme 24
Scheme 25
Scheme 26
Fig. 13

Similar content being viewed by others

Abbreviations

salen:

N,N′-disalicylideneethylenediamine dianion

saltn:

N,N′-disalicylidene-1,3-diaminopropane dianion

salbn:

N,N′-disalicylidene-1,4-diaminobutane dianion

saloph:

N,N′-disalicylidene-o-phenylenediamine dianion

salamo:

1,2-Bis(salicylideneaminooxy)ethane dianion

References

  1. Pfeiffer, P., Breith, E., Lübbe, E., Tsumaki, T.: Tricyclische orthokondensierte Nebenvalenzringe. Libegs Ann. Chem. 503, 84–130 (1933)

    Article  CAS  Google Scholar 

  2. Pfeiffer, P., Hesse, T., Pfitzner, H., Scholl, W., Thielert, H.: Innere Komplexsalze der Aldimin- und Azoreihe. J. Prakt. Chem. 149, 217–296 (1937)

    Article  CAS  Google Scholar 

  3. Marvel, C.S., Aspey, S.A., Dudley, E.A.: Quadridentate and sexadentate chelates. Some preliminary studies in their preparation and thermal stability. J. Am. Chem. Soc. 78, 4905–4909 (1956)

    Article  CAS  Google Scholar 

  4. Schaefer, W.P., Marsh, R.E.: Oxygen-carrying cobalt compounds. I. Bis(salicylaldehyde)ethylenediiminecobalt(II) monochloroformate. Acta Crystallogr. B25, 1675–1682 (1969)

    Google Scholar 

  5. Hall, D., Moore, F.H.: The crystal structure of NN′-Disalicylidene-ethylenediaminezinc(II) monohydrate. J. Chem. Soc. A 1822–1824 (1966)

  6. Scheringer, C., Hinkler, K., von Stackelberg, M.: Die Kristallstructur des Eisen(III)-Salicylaldehyd-äthylendiimin-chlorids. Z. Anorg. Allg. Chem. 306, 35–38 (1960)

    Article  CAS  Google Scholar 

  7. Gerloch, M., Mabbs, F.E.: The crystal and molecular structure of chloro-(NN′-bis-salicylidene-ethylenediamine)iron(III) as a hexaco-ordinate dimer. J. Chem. Soc. A. 1900–1908 (1967)

  8. Pecoraro, V.L., Butler, W.M.: Structure of N,N′-ethylenebis(salicylideneiminato)manganese(III) chloride acetonitrile solvate. Acta Crystallogr. C42, 1151–1154 (1986)

    CAS  Google Scholar 

  9. Coggon, P., McPhail, A.T., Mabbs, F.E., Richards, A., Thornley, A.S.: Preparation, magnetic, and electronic spectral properties of some chromium(III)–NN′-ethylenebis(salicylideneiminato) complexes: Crystal and molecular structure of NN′-ethylenebis(salicylideneiminato)diaquochromium(III) chloride. J. Chem. Soc. A 3296–3303 (1970)

  10. Gilli, G., Cruickshank, D.W.J., Beddoes, R.L., Mills, O.S.: The crystal and molecular structure of dichloro-N,N′-ethylenebis(salicylideneiminato)titanium(IV)–tetrahydrofuran. Acta Crystallogr. B28, 1889–1893 (1972)

    Google Scholar 

  11. Jacobsen, E.N.: Asymmetric catalytic epoxidation of unfunctionalized olefins. In: Ojima, I. (ed.) Catalytic Asymmetric Synthesis, pp. 159–202. VCH, New York (1993)

    Google Scholar 

  12. Katsuki, T.: Catalytic asymmetric oxidations using optically active (salen)manganese(III) complexes as catalysts. Coord. Chem. Rev. 140, 189–214 (1995)

    Article  CAS  Google Scholar 

  13. Jacobsen, E.N.: Asymmetric catalysis of epoxide ring-opening reactions. Acc. Chem. Res. 33, 421–431 (2000)

    Article  CAS  Google Scholar 

  14. Tsou, T.-T., Loots, M., Halpern, J.: Kinetic determination of transition-metal–alkyl bond dissociation energies: application to organocobalt compounds related to B12 coenzymes. J. Am. Chem. Soc. 104, 623–624 (1982)

    Article  CAS  Google Scholar 

  15. Summers, M.F., Marzilli, L.G., Bresciani-Pahor, N., Randaccio, L.: Unusual bond lengths, conformations, and ligand exchange rates in B12 models with the bis(salicylidene)-o-phenylenediamine equatorial ligand. J. Am. Chem. Soc. 106, 4478–4485 (1984)

    Article  CAS  Google Scholar 

  16. Di Bella, S., Fragalà, I.: Synthesis and second-order nonlinear optical properties of bis(salicylaldiminato)M(II) metalloorganic materials. Synth. Metals 115, 191–196 (2000)

    Article  CAS  Google Scholar 

  17. Lacroix, P.G.: Second-order optical nonlinearities in coordination chemistry: the case of bis(salicylaldiminato)metal Schiff base complexes. Eur. J. Inorg. Chem. 339–348 (2001)

  18. Hoshino, N.: Liquid crystal properties of metal–salicylaldimine complexes. Chemical modifications towards lower symmetry. Coord. Chem. Rev. 174, 77–108 (1998)

    Article  CAS  Google Scholar 

  19. Wezenberg, S.J., Kleij, A.W.: Material applications for salen frameworks. Angew. Chem. Int. Ed. 47, 2354–2364 (2008)

    Article  CAS  Google Scholar 

  20. Kleij, A.W.: New templating strategies with salen scaffolds (Salen = N,N′-bis(salicylidene)ethylenediamine dianion). Chem. Eur. J. 14, 10520–10529 (2008)

    Article  CAS  Google Scholar 

  21. Feltham, H.L.C., Brooker, S.: Ligands and polymetallic complexes derived from 1,4-diformyl-2,3-dihydroxybenzene and two close analogues. Coord. Chem. Rev. 253, 1458–1475 (2009)

    Article  CAS  Google Scholar 

  22. Kleij, A.W.: Zinc-centred salen complexes: versatile and accessible supramolecular building motifs. Dalton Trans. 4635–4639 (2009)

  23. Akine, S., Nabeshima, T.: Cyclic and acyclic oligo(N2O2) ligands for cooperative multi-metal complexation. Dalton Trans. 10395–10408 (2009)

  24. Sinn, E., Harris, C.M.: Schiff base metal complexes as ligands. Coord. Chem. Rev. 4, 391–422 (1969)

    Article  CAS  Google Scholar 

  25. Hobday, M.D., Smith, T.D.: N,N′-ethylenebis(salicylideneiminato) transition metal ion chelates. Coord. Chem. Rev. 9, 311–337 (1973)

    Article  CAS  Google Scholar 

  26. Sakamoto, M., Manseki, K., Okawa, H.: d–f Heteronuclear complexes: synthesis, structures and physicochemical aspects. Coord. Chem. Rev. 219–221, 379–414 (2001)

    Article  Google Scholar 

  27. Gokel, G.W., Leevy, W.M., Weber, M.E.: Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem. Rev. 104, 2723–2750 (2004)

    Article  CAS  Google Scholar 

  28. Nabeshima, T.: Regulation of ion recognition by utilizing information at the molecular level. Coord. Chem. Rev. 148, 151–169 (1996)

    Article  CAS  Google Scholar 

  29. Van Veggel, F.C.J.M., Verboom, W., Reinhoudt, D.N.: Metallomacrocycles: supramolecular chemistry with hard and soft metal cations in action. Chem. Rev. 94, 279–299 (1994)

    Article  Google Scholar 

  30. Nabeshima, T., Akine, S., Saiki, T.: Pseudomacrocycles and pseudomacrobicycles as novel frameworks for multirecognition and regulation of molecular function. Rev. Heteroat. Chem. 22, 219–239 (2000)

    CAS  Google Scholar 

  31. Nabeshima, T., Akine, S.: Functional supramolecular systems with highly cooperative and responding properties. Chem. Rec. 8, 240–251 (2008)

    Article  CAS  Google Scholar 

  32. Nabeshima, T., Akine, S., Ikeda, C., Yamamura, M.: Metallo-supramolecular systems for synergistic functions based on unique arrangement of ligation sites. Chem. Lett. 39, 10–16 (2010)

    Article  CAS  Google Scholar 

  33. Nabeshima, T.: Construction of cooperative and responsive supramolecular systems for molecular functional modulation. Bull. Chem. Soc. Jpn. 83, 969–991 (2010)

    Article  CAS  Google Scholar 

  34. Fabbrizzi, L., Licchelli, M., Rabaioli, G., Taglietti, A.: The design of luminescent sensors for anions and ionisable analytes. Coord. Chem. Rev. 205, 85–108 (2000)

    Article  CAS  Google Scholar 

  35. Robertson, A., Shinkai, S.: Cooperative binding in selective sensors, catalysts and actuators. Coord. Chem. Rev. 205, 157–199 (2000)

    Article  CAS  Google Scholar 

  36. Keefe, M.H., Benkstein, K.D., Hupp, J.T.: Luminescent sensor molecules based on coordinated metals: a review of recent developments. Coord. Chem. Rev. 205, 201–228 (2000)

    Article  CAS  Google Scholar 

  37. Rogers, C.W., Wolf, M.O.: Luminescent molecular sensors based on analyte coordination to transition-metal complexes. Coord. Chem. Rev. 233–234, 341–350 (2002)

    Article  Google Scholar 

  38. Beer, P.D.: Anion selective recognition and optical/electrochemical sensing by novel transition-metal receptor systems. Chem. Commun. 689–696 (1996)

  39. Beer, P.D.: Transition-metal receptor systems for the selective recognition and sensing of anionic guest species. Acc. Chem. Res. 31, 71–80 (1998)

    Article  CAS  Google Scholar 

  40. Beer, P.D., Cadman, J.: Electrochemical and optical sensing of anions by transition metal based receptors. Coord. Chem. Rev. 205, 131–155 (2000)

    Article  CAS  Google Scholar 

  41. Beer, P.D., Hayes, E.J.: Transition metal and organometallic anion complexation agents. Coord. Chem. Rev. 240, 167–189 (2003)

    Article  CAS  Google Scholar 

  42. Calderazzo, F., Floriani, C.: Reduction of NN′-ethylenebis(salicylideneiminato)cobalt(II) and its conversion into a methyl derivative containing a direct cobalt–carbon bond. Chem. Commun. 139–140 (1967)

  43. Costa, G., Mestroni, G., Pellizer, G.: Reduction of cobalt chelates of bis(salicylaldehyde)ethylenediimine and synthesis of organocobalt derivatives. J. Organomet. Chem. 11, 333–340 (1968)

    Article  CAS  Google Scholar 

  44. Fachinetti, G., Floriani, C., Zanazzi, P.F., Zanzari, A.R.: Bifunctional model complexes active in carbon dioxide fixation: synthesis and X-ray structure of bimetallic cobalt(I)–alkali cation–Schiff base complexes. Inorg. Chem. 18, 3469–3475 (1979)

    Article  CAS  Google Scholar 

  45. Gambarotta, S., Arena, F., Floriani, C., Zanazzi, P.F.: Carbon dioxide fixation: bifunctional complexes containing acidic and basic sites working as reversible carriers. J. Am. Chem. Soc. 104, 5082–5092 (1982)

    Article  CAS  Google Scholar 

  46. Floriani, C., Calderazzo, F., Randaccio, L.: Crystal and molecular structure of a cationinc sodium complex: the sodium tetraphenylborate adduct of NN′-ethylenebis(salicylideneiminato)cobalt(II). cobalt(II), nickel(II), and copper(II) complexes of quadridentate Schiff bases as complexing agents for lithium, sodium, and ammonium cations. J. Chem. Soc. Chem. Commun. 384–385 (1973)

  47. Randaccio, L.: Crystal chemistry of d 0 cations with Schiff-base metal complexes. I. The crystal and molecular structure of bis[N,N′-ethylene-bis(salicylideneiminato)cobalt(II)]-bis-tetrahydrofuran-sodium(I) tetraphenylborate. Gazz. Chim. Ital. 104, 991–1002 (1974)

    CAS  Google Scholar 

  48. Milburn, G.H.W., Truter, M.R., Vickery, B.L.: Crystal structure of a sodium complex, sodium perchlorate–bis[NN′-ethylenebis(salicylideneiminato)copper(II)]. J. Chem. Soc. Chem. Commun. 1188 (1968)

  49. Milburn, H., Truter, M.R., Vickery, B.L.: Crystal structure of a sodium complex, bis-[NN′-ethylenebis(salicyclideniminato)copper(II)]perchloratosodium-p-xylene. J. Chem. Soc. Dalton Trans. 841–846 (1974)

  50. Gruber, S.J., Harris, C.M., Sinn, E.: Metal complexes as ligands—IV bi- and tri-nuclear complexes derived from metal complexes of tetradentate salicylaldimines. J. Inorg. Nucl. Chem. 30, 1805–1830 (1968)

    Article  CAS  Google Scholar 

  51. Bresciani-Pahor, N., Calligaris, M., Delise, P., Nardin, G., Randaccio, L., Zotti, E., Fachinetti, G., Floriani, C.: Quadridentate Schiff-base metal complexes as chelating ligands of alkali metals. Synthesis and structure of ammonium and sodium tetraphenylborate addition complexes with [NN′-ethylenebis(salicylideneiminato)]nickel(II). J. Chem. Soc. Dalton Trans. 2310–2316 (1976)

  52. Armstrong, L.G., Lip, H.C., Lindoy, L.F., McPartlin, M., Tasker, P.A.: Alkali-metal salt adducts of nickel(II) complexes of quadridentate Schiff-base ligands. The X-ray structure of NN′-ethylenebis(acetylacetoneiminato)nickel. J. Chem. Soc. Dalton Trans. 1771–1774 (1977)

  53. Bhattacharyya, B.C., Kabiraj, U.: Reactions of anionic nucleophiles with salicylaldimine nickel(II) complexes. Chem. Ind. 260–261 (1974)

  54. Skovsgaard, S., Bond, A.D., McKenzie, C.J.: Dipotassium hexakis({2,2′-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}nickel(II)) tetracyanonickelate(II) methanol hexasolvate dihydrate. Acta Crystallogr. E61, m135–m137 (2005)

    CAS  Google Scholar 

  55. Giacomelli, A., Rotunno, T., Senatore, L.: Spectrophotometric study of the equilibrium between sodium tetraphenylborate and nickel(II) and cobalt(II) Schiff base complexes. Inorg. Chem. 24, 1303–1306 (1985)

    Article  CAS  Google Scholar 

  56. Giacomelli, A., Rotunno, T., Senatore, L., Settambolo, R.: Spectrophotometric study of the equilibria between nickel(II) Schiff base complexes and ammonium-like cations or sodium tetraphenylborate. Inorg. Chem. 28, 3552–3555 (1989)

    Article  CAS  Google Scholar 

  57. Gruber, S.J., Harris, C.M., Sinn, E.: Metal complexes as ligands–bi- and tri-nuclear complexes containing similar and dissimilar metal atoms. Inorg. Nucl. Chem. Lett. 3, 495–499 (1967)

    Article  CAS  Google Scholar 

  58. Carbonaro, L., Isola, M., La Pegna, P., Senatore, L., Marchetti, F.: Spectrophotometric study of the equilibria between nickel(II) Schiff-base complexes and alkaline earth or nickel(II) cations in acetonitrile solution. Inorg. Chem. 38, 5519–5525 (1999)

    Article  CAS  Google Scholar 

  59. Banerjee, A.K., Mahapatra, B., Roy, S.K.: Metal complexes as ligands. Polynuclear alkaline earth metal complexes with copper(II)- and nickel(II)-salicylaldimines. J. Indian Chem. Soc. 62, 778–780 (1985)

    CAS  Google Scholar 

  60. Condorelli, G., Fragalà, I., Giuffrida, S., Cassol, A.: Lanthanide compounds with Schiff bases and with copper(II) Schiff base complexes as ligands. Z. Anorg. Allg. Chem. 412, 251–257 (1975)

    Article  CAS  Google Scholar 

  61. Harrison, D.W., Bünzli, J.-C.: Polynuclear complexes of 3d and 4f transition metals. Synthesis and structure of lanthanide(III) adducts with copper and nickel Schiff’s base complexes as ligands. Inorg. Chim. Acta 109, 185–192 (1985)

    Article  CAS  Google Scholar 

  62. Manseki, K., Shimizu, Y., Obata, A., Sakiyama, H., Unoura, K., Sakamoto, M., Nishida, Y., Sadaoka, Y., Okawa, H.: Electrochemical studies for interaction between [Cu(salen)] and La(III) ion in N,N-dimethylformamide. Chem. Lett. 1256–1257 (2001)

  63. Bencini, A., Benelli, C., Caneschi, A., Carlin, R.L., Dei, A., Gatteschi, D.: Crystal and molecular structure of and magnetic coupling in two complexes containing gadolinium(III) and copper(II) ions. J. Am. Chem. Soc. 107, 8128–8136 (1985)

    Article  CAS  Google Scholar 

  64. Bencini, A., Benelli, C., Caneschi, A., Dei, A., Gatteschi, D.: Crystal and molecular structure and magnetic properties of a trinuclear complex containing exchange-coupled GdCu2 species. Inorg. Chem. 25, 572–575 (1986)

    Article  CAS  Google Scholar 

  65. Kahn, M.L., Rajendiran, T.M., Jeannin, Y., Mathonière, C., Kahn, O.: LnIIICuII Schiff base compounds (Ln = Ce, Gd, Tb, Dy, Ho, Er): structural and magnetic properties. C. R. Acad. Sci. Paris, Ser. IIc 3, 131–137 (2000)

    CAS  Google Scholar 

  66. Gao, T., Sun, W.-B., Yan, P.-F., Li, G.-M., Hou, G.-F.: [μ-N,N′-Bis(2-oxidobenzylidene)-1,2-ethanediamine](methanol)trinitratocopper(II)europium(III). Acta Crystallogr. E63, m2201–m2202 (2007)

    CAS  Google Scholar 

  67. Bi, W., Wei, T., Lü, X., Hui, Y., Song, J., Zhao, S., Wong, W.-K., Jones, R.A.: Hetero-trinuclear near-infrared (NIR) luminescent Zn2Ln complexes from salen-type Schiff-base ligands. New J. Chem. 33, 2326–2334 (2009)

    Article  CAS  Google Scholar 

  68. Wei, T., Zhao, S., Bi, W., Lü, X., Hui, Y., Song, J., Wong, W.-K., Jones, R.A.: Co-existence of heterometallic Zn2Er and ZnEr arrayed chromophores for the sensitization of near-infrared (NIR) luminescence. Inorg. Chem. Commun. 12, 1216–1219 (2009)

    Article  CAS  Google Scholar 

  69. Hui, Y., Feng, W., Wei, T., Lü, X., Song, J., Zhao, S., Wong, W.-K., Jones, R.A.: Adjustment of coordination environment of Ln3+ ions to modulate near-infrared luminescent properties of Ln3+ complexes. Inorg. Chem. Commun. 14, 200–204 (2011)

    Article  CAS  Google Scholar 

  70. Makarevich, A.M., Kardashev, S.V., Grigor’ev, A.N., Kuz’mina, N.P.: Formation of heterometallic compounds in mixed solutions of nickel(II)–Schiff base complexes and lanthanide nitrates: electrospray ionization mass spectrometry data. Russ. J. Inorg. Chem. 53, 1476–1483 (2008)

    Article  Google Scholar 

  71. Ramade, I., Kahn, O., Jeannin, Y., Robert, F.: Design and magnetic properties of a magnetically isolated GdIIICuII pair. Crystal structures of [Gd(hfa)3Cu(salen)], [Y(hfa)3Cu(salen)], [Gd(hfa)3Cu(salen)(Meim)], and [La(hfa)3(H2O)Cu(salen)] [hfa = hexafluoroacetylacetonato, salen = N,N′-ethylenebis(salicylideneaminato), Meim = 1-methylimidazole]. Inorg. Chem. 36, 930–936 (1997)

    Article  CAS  Google Scholar 

  72. Ryazanov, M., Nikiforov, V., Lloret, F., Julve, M., Kuzmina, N., Gleizes, A.: Magnetically isolated CuIIGdIII pairs in the sereis [Cu(acacen)Gd(pta)3], [Cu(acacen)Gd(hfa)3], [Cu(salen)Gd(hfa)3], [acacen = N,N′-ethylenebis(acetylacetoniminate(–)), salen = N,N′-ethylenebis(salicylideneiminate(–)), hfa = 1,1,1,5,5,5-hexafluoropentane-2,4-dionate(–), pta = 1,1,1-trifluoro-5,5-dimethylhexane-2,4-dionate(–)]. Inorg. Chem. 41, 1816–1823 (2002)

    Article  CAS  Google Scholar 

  73. Pointillart, F., Bernot, K.: Determination of the nature of exchange interaction in the 3d–4f magnetic chain {[Cu(salen)Pr(hfac)3]2(L)} n (L = 4,4′-bipyridine, pyrazine). Eur. J. Inorg. Chem. 952–964 (2010)

  74. Gleizes, A., Julve, M., Kuzmina, N., Alikhanyan, A., Lloret, F., Malkerova, I., Sanz, J. L., Senocq, F.: Heterobimetallic df metal complexes as potential single-source precursors for MOCVD: structure and thermodynamic study of the sublimation of [Ni(salen)Ln(hfa)3], Ln = Y, Gd. Eur. J. Inorg. Chem. 1169–1174 (1998)

  75. Hasegawa, Y., Saitou, S., Tamaki, S., Yajima, H., Tadokoro, M.: Effects of zinc(II) on the luminescence of europium(III) in complexes containing β-diketone and Schiff bases. Helv. Chim. Acta 92, 2565–2575 (2009)

    Article  CAS  Google Scholar 

  76. Kato, M., Muto, Y., Jonassen, H.B., Imai, K., Tokii, T.: Spectral and magnetic studies on bi- and tri-nuclear complexes derived from copper(II) complexes with tetradentate Schiff base and one of the chlorides, nitrates and perchlorates of copper(II), nickel(II), cobalt(II) and zinc(II). Bull. Chem. Soc. Jpn. 43, 1066–1078 (1970)

    Article  CAS  Google Scholar 

  77. Bear, C.A., Waters, J.M., Waters, T.N.: Crystal and molecular structure of the tetranuclear copper complex di-μ-chloro-bis{chloro [NN′-ethylenebis(salicylideneiminato)copper(II)]copper(II)}. J. Chem. Soc. Dalton Trans. 1059–1062 (1974)

  78. Epstein, J.M., Figgis, B.N., White, A.H., Willis, A.C.: Crystal structures of two trinuclear Schiff-base copper(II) complexes. J. Chem. Soc. Dalton Trans. 1954–1961 (1974)

  79. Leslie, K.A., Drago, R.S., Stucky, G.D., Kitko, D.J., Breese, J.A.: Complexes as ligands. 2. Structural, spectral, and magnetic properties of the bimetallomer formed from N,N′-ethylenebis(salicylideniminato)copper(II) and bis(hexafluoroacetylacetonato)copper(II). Inorg. Chem. 18, 1885–1891 (1979)

    Article  CAS  Google Scholar 

  80. Fukuhara, C., Tsuneyoshi, K., Katsura, K., Matsumoto, N., Kida, S., Mori, M.: Linear tetranuclear copper(II) complexes with bridging methoxide and a Schiff-base ligand: the preparation and magnetic study of the [Cu(salpd-μ-O,O′)(μ-L)Cu(μ-CH3O)2Cu(μ-L)(salpd-μ-O,O′)Cu] complexes (and L = acetate or formate ions) and the structure determination of the complex with L = acetate. Bull. Chem. Soc. Jpn. 62, 3939–3943 (1989)

    Article  CAS  Google Scholar 

  81. O’Bryan, N.B., Maier, T.O., Paul, I.C., Drago, R.S.: Complexes as ligands. Structure and metal exchange of β-diketonate–Schiff’s base adducts containing copper(II) and cobalt(II). J. Am. Chem. Soc. 95, 6640–6645 (1973)

    Article  Google Scholar 

  82. Gerli, A., Hagen, K.S., Marzilli, L.G.: Nuclearity and formulation of SALPN2− complexes formed from M(O2CCH3)2: resolution of longstanding problems by X-ray crystallography. Inorg. Chem. 30, 4673–4676 (1991)

    Article  CAS  Google Scholar 

  83. Ülkü, D., Ercan, F., Atakol, O., Dinçer, F.N.: Bis{(μ-acetato)[μ-bis(salicylidene)-1,3-propanediaminato](dimethyl sulfoxide)-nickel(II)}nickel(II). Acta Crystallogr. C53, 1056–1057 (1997)

    Google Scholar 

  84. Atakol, O., Arici, C., Ercan, F., Ülkü, D.: Bis{(μ-acetato)[μ-bis(salicylidene)-1,3-propanediaminato]copper(II)}copper(II) dioxane solvate. Acta Crystallogr. C55, 511–513 (1999)

    CAS  Google Scholar 

  85. Atakol, O., Aksu, M., Ercan, F., Arici, C., Tahir, M.N., Ülkü, D.: A linear trinuclear CdII–CdII–CdII complex with a μ-acetato bridge: bis{(μ-acetato)[μ-bis(salicylidene)-1,3-propanediaminato]-cadmium(II)}cadmium(II). Acta Crystallogr. C55, 1072–1075 (1999)

    CAS  Google Scholar 

  86. Ülkü, D., Tatar, L., Atakol, O., Aksu, M.: Bis{(μ-acetato)[μ-bis(salicylidene)-1,3-propanediaminato]zinc(II)}zinc(II). Acta Crystallogr. C57, 273–274 (2001)

    Google Scholar 

  87. Reglinski, J., Morris, S., Stevenson, D.E.: Supporting conformational change at metal centres. Part 1: octahedral systems. Polyhedron 21, 2167–2174 (2002)

    Article  CAS  Google Scholar 

  88. Reglinski, J., Morris, S., Stevenson, D.E.: Supporting conformational change at metal centres. Part 2: four and five coordinate geometry. Polyhedron 21, 2175–2182 (2002)

    Article  CAS  Google Scholar 

  89. Akine, S., Taniguchi, T., Nabeshima, T.: Cooperative formation of trinuclear zinc(II) complexes via complexation of a tetradentate oxime chelate ligand, salamo, and zinc(II) acetate. Inorg. Chem. 43, 6142–6144 (2004)

    Article  CAS  Google Scholar 

  90. You, Z.-L., Zhu, H.-L., Liu, W.-S.: A linear trinuclear CoII–CoII–CoII complex with μ-acetate bridges: di-μ-acetato-bis[μ-N,N′-bis(salicylidene)-1,4-butanediaminato]tricobalt(II). Acta Crystallogr. E60, m1900–m1902 (2004)

    CAS  Google Scholar 

  91. Ma, J.-L., You, Z.-L., Zhu, H.-L.: Di-μ2-acetato-bis[μ2-N,N′-bis(salicylidene)-butane-1,4-diaminato]trimanganese(II). Acta Crystallogr. E61, m1286–m1288 (2005)

    CAS  Google Scholar 

  92. Akine, S., Nabeshima, T.: Novel thiosalamo ligand as a remarkably stable N2S2 salen-type chelate and synthesis of a nickel(II) complex. Inorg. Chem. 44, 1205–1207 (2005)

    Article  CAS  Google Scholar 

  93. Durmuş, S., Ateş, B.M., Atakol, O., Ercan, F.: Synthesis and crystal structure of a homotrinuclear Ni(II) complex. Z. Kristallogr. 220, 973–976 (2005)

    Article  Google Scholar 

  94. Fukuhara, C., Tsuneyoshi, K., Matsumoto, N., Kida, S., Mikuriya, M., Mori, M.: Synthesis and characterization of trinuclear Schiff-base complexes containing sulphur dioxide or hydrogensulphite ions as bridging groups. Crystal structure of [Zn{(μ-CH3CO2)(salpd-μ-O,O’)Cu}2] [salpd = propane-1,3-diylbis(salicylideneiminate)]. J. Chem. Soc. Dalton Trans. 3473–3479 (1990)

  95. Ülkü, D., Tahir, M.N., Atakol, O., Nazir, H.: Bis{(μ-acetato)[μ-bis(salicylidene)-1,3-propanediaminato](N,N-dimethylformamide)nickel(II)}cadmium(II). Acta Crystallogr. C53, 872–874 (1997)

    Google Scholar 

  96. Tahir, M.N., Ülkü, D., Atakol, O., Çakirer, O.: Bis[μ-N,N′-bis(salicylidene)-1,3-propanediaminato]bis(dimethylformamide)di(μ-nitrito)copper(II)dinickel(II)–dimethylformamide (1/2). Acta Crystallogr. C54, 468–470 (1998)

    CAS  Google Scholar 

  97. Ercan, F., Atakol, O.: A linear trinuclear NiII–MnII–NiII complex with a μ-acetato bridge: bis{(μ-acetato)[μ-bis(salicylidene)-1,3-propanediaminato](N,N-dimethylformamide)nickel(II)}manganese(II). Acta Crysltallogr. C54, 1268–1270 (1998)

    CAS  Google Scholar 

  98. Ercan, F., Ülkü, D., Atakol, O., Dinçer, F.N.: Bis{(μ-acetato)[μ-bis(salicylidene)-1,3-propanediaminato]copper(II)}cadmium(II) dioxane solvate. Acta Crystallogr. C54, 1787–1790 (1998)

    CAS  Google Scholar 

  99. Ülkü, D., Tatar, L., Atakol, O., Durmuş, S.: Bis{(μ-nitrato)[μ-bis(salicylidene)-1,3-propanediaminato]copper(II)}zinc(II). Acta Crystallogr. C55, 1652–1654 (1999)

    Google Scholar 

  100. Yang, X., Jones, R.A., Wong, W.-K.: Anion dependant self-assembly and the first X-ray structure of a neutral homoleptic lanthanide salen complex Tb4(salen)6. Chem. Commun. 3266–3268 (2008)

  101. Yang, X., Jones, R.A., Rivers, J.H., Wong, W.-K.: Syntheses, structures, and photoluminescence of 1-D lanthanide coordination polymers. Dalton Trans. 10505–10510 (2009)

  102. Cunningham, D., Gallagher, J.F., Higgins, T., McArdle, P., McGinley, J., Sheerin, D.: A new co-ordinating role for a metal salicylaldimine. J. Chem. Soc. Chem. Commun. 959–961 (1990)

  103. Costes, J.-P., Dahan, F., Dupuis, A., Laurent, J.-P.: A genuine example of a discrete bimetallic (Cu, Gd) complex: structural determination and magnetic properties. Inorg. Chem. 35, 2400–2402 (1996)

    Article  CAS  Google Scholar 

  104. Costes, J.-P., Dahan, F., Dupuis, A., Laurent, J.-P.: A general route to strictly dinuclear Cu(II)/Ln(III) complexes. Structural determination and magnetic behavior of two Cu(II)/Gd(III) complexes. Inorg. Chem. 36, 3429–3433 (1997)

    Article  CAS  Google Scholar 

  105. Costes, J.-P., Dahan, F., Dupuis, A., Laurent, J.-P.: Experimental evidence of a ferromagnetic ground state (S = 9/2) for a dinuclear Gd(III)–Ni(II) complex. Inorg. Chem. 36, 4284–4286 (1997)

    Article  CAS  Google Scholar 

  106. Costes, J.-P., Dahan, F., Dupuis, A., Laurent, J.-P.: Nature of the magnetic interaction in the (Cu2+, Ln3+) pairs: an empirical approach based on the comparison between homologous (Cu2+, Ln3+) and (Ni 2+LS , Ln3+) complexes. Chem. Eur. J. 4, 1616–1620 (1998)

    Article  CAS  Google Scholar 

  107. Costes, J.-P., Dahan, F., Dupuis, A.: Influence of anionic ligands (X) on the nature and magnetic properties of dinuclear LCuGdX3·nH2O complexes (LH2 standing for tetradentate Schiff base ligands deriving from 2-hydroxy-3-methoxybenzaldehyde and X being Cl, N3C2, and CF3COO). Inorg. Chem. 39, 165–168 (2000)

    Article  CAS  Google Scholar 

  108. Costes, J.-P., Dahan, F., Donnadieu, B., Garcia-Tojal, J., Laurent, J.-P.: Versatility of the nature of the magnetic gadolinium(III)–vanadium(IV) interaction—structure and magnetic properties of two heterobinuclear [Gd, V(O)] complexes. Eur. J. Inorg. Chem. 363–365 (2001)

  109. Costes, J.-P., Clemente-Juan, J.M., Dahan, F., Dumestre, F., Tuchagues, J.-P.: Dinuclear (FeII, GdIII) complexes deriving from hexadentate Schiff bases: synthesis, structure, and mössbauer and magnetic properties. Inorg. Chem. 41, 2886–2891 (2002)

    Article  CAS  Google Scholar 

  110. Margeat, O., Lacroix, P.G., Costes, J.-P., Donnadieu, B., Lepetit, C., Nakatani, K.: Synthesis, structures, and physical properties of copper(II)–gadolinium(III) complexes combining ferromagnetic coupling and quadratic nonlinear optical properties. Inorg. Chem. 43, 4743–4750 (2004)

    Article  CAS  Google Scholar 

  111. Elmali, A., Elerman, Y.: Crystal structure and magnetic properties of a novel CuIINdIII heterodinuclear Schiff base complex. Z. Naturforsch. 59b, 530–534 (2004)

    Google Scholar 

  112. Elmali, A., Elerman, Y.: Magnetic properties and structure of a CuIIDyIII heterodinuclear Schiff base complex. J. Mol. Struct. 737, 29–33 (2005)

    Article  CAS  Google Scholar 

  113. Akine, S., Matsumoto, T., Taniguchi, T., Nabeshima, T.: Synthesis, structures, and magnetic properties of tri- and dinuclear copper(II)–gadolinium(III) complexes of linear oligooxime ligands. Inorg. Chem. 44, 3270–3274 (2005)

    Article  CAS  Google Scholar 

  114. Gao, T., Yan, P.-F., Li, G.-M., Hou, G.-F., Gao, J.-S.: N,N′-Ethylene-bis(3-methoxysalicylideneimine) mononuclear (4f) and heterodinuclear (3d–4f) metal complexes: synthesis, crystal structure and luminescent properties. Inorg. Chim. Acta 361, 2051–2058 (2008)

    Article  CAS  Google Scholar 

  115. Kajiwara, T., Takahashi, K., Hiraizumi, T., Takaishi, S., Yamashita, M.: Coordination enhancement of single-molecule magnet behavior of Tb(III)–Cu(II) dinuclear systems. Polyhedron 28, 1860–1863 (2009)

    Article  CAS  Google Scholar 

  116. Kharchenko, A.V., Makarevich, A.M., Grigor’ev, A.N., Sorokina, N.M., Lysenko, K.A., Kuz’mina, N.P.: Deposition of thin films of neodymium and samarium nickelates from heterometallic coordination compounds by centrifugation. Doklady Chem. 426, 124–127 (2009)

    Article  CAS  Google Scholar 

  117. Şenyüz, N., Yüksektepe, Ç., Bati, H., Çalışkan, N., Büyükgüngör, O.: Synthesis, crystal structure properties of {μ-nitrato-[N,N′-ethylene-bis(3-methoxysalicylideneimin) diaqua nitrato Cu(II)La(III)]nitrat}. J. Chem. Crystallogr. 40, 989–992 (2010)

    Article  CAS  Google Scholar 

  118. Gao, T., Yan, P.-F., Li, G.-M., Zhang, J.-W., Sun, W.-B., Suda, M., Einaga, Y.: Correlations between structure and magnetism of three N,N′-ethylene-bis(3-methoxysalicylideneimine) gadolinium complexes. Solid State Sci. 12, 597–604 (2010)

    Article  CAS  Google Scholar 

  119. Costes, J.-P., Dahan, F., Dupuis, A., Laurent, J.-P.: Structural studies of a dinuclear (Cu, Gd) and two trinuclear (Cu2, Ln) complexes (Ln = Ce, Er). Magnetic properties of two original (Cu, Gd) complexes. New J. Chem. 1525–1529 (1998)

  120. Wong, W.-K., Liang, H., Wong, W.-Y., Cai, Z., Li, K.-F., Cheah, K.-W.: Synthesis and near-infrared luminescence of 3d–4f bi-metallic Schiff base complexes. New J. Chem. 26, 275–278 (2002)

    Article  CAS  Google Scholar 

  121. Costes, J.-P., Laussac, J.-P., Nicodème, F.: Complexation of a Schiff base ligand having two coordination sites (N2O2 and O2O2) with lanthanide ions (Ln = La, Pr): an NMR study. J. Chem. Soc. Dalton Trans. 2731–2736 (2002)

  122. Yang, X., Jones, R.A., Lynch, V., Oye, M.M., Holmes, A.L.: Synthesis and near infraread luminescence of a tetrametallic Zn2Yb2 architecture from a trinuclear Zn3L2 Schiff base complex. Dalton Trans. 849–851 (2005)

  123. Yang, X., Jones, R.A., Wu, Q., Oye, M.M., Lo, W.-K., Wong, W.-K., Holmes, A.L.: Synthesis, crystal structures and antenna-like sensitization of visible and near infrared emission in heterobimetallic Zn–Eu and Zn–Nd Schiff base compounds. Polyhedron 25, 271–278 (2006)

    Article  CAS  Google Scholar 

  124. Lo, W.-K., Wong, W.-K., Wong, W.-Y., Guo, J., Yeung, K.-T., Cheng, Y.-K., Yang, X., Jones, R.A.: Heterobimetallic Zn(II)–Ln(III) phenylene-bridged Schiff base complexes, computational studies, and evidence for singlet energy transfer as the main pathway in the sensitization of near-infrared Nd3+ luminescence. Inorg. Chem. 45, 9315–9325 (2006)

    Article  CAS  Google Scholar 

  125. Bi, W.-Y., Lü, X.-Q., Chai, W.-L., Song, J.-R., Wong, W.-Y., Wong, W.-K., Jones, R.A.: Construction and NIR luminescent property of hetero-bimetallic Zn–Nd complexes from two chiral salen-type Schiff-base ligands. J. Mol. Struct. 891, 450–455 (2008)

    Article  CAS  Google Scholar 

  126. Akine, S., Utsuno, F., Taniguchi, T., Nabeshima, T.: Dinuclear complexes of the N2O2 oxime chelate ligand with zinc(II)–lanthanide(III) as a selective sensitization system for Sm3+. Eur. J. Inorg. Chem. 3143–3152 (2010)

  127. Costes, J.-P., Donnadieu, B., Gheorghe, R., Novitchi, G., Tuchagues, J.-P., Vendier, L.: Di- or Trinuclear 3d–4f Schiff base complexes: the role of anions. Eur. J. Inorg. Chem. 5235–5244 (2008)

  128. Lo, W.-K., Wong, W.-K., Guo, J., Wong, W.-Y., Li, K.-F., Cheah, K.-W.: Synthesis, structures and luminescent properties of new heterobimetallic Zn–4f Schiff base complexes. Inorg. Chim. Acta 357, 4510–4521 (2004)

    Article  CAS  Google Scholar 

  129. Wong, W.-K., Yang, X., Jones, R.A., Rivers, J.H., Lynch, V., Lo, W.-K., Xiao, D., Oye, M.M., Holmes, A.L.: Multinuclear luminescent Schiff-base Zn–Nd sandwich complexes. Inorg. Chem. 45, 4340–4345 (2006)

    Article  CAS  Google Scholar 

  130. Zhao, S., Lü, X., Hou, A., Wong. W.-Y., Wong, W.-K., Yang, X., Jones, R.A.: Heteronuclear trimetallic and 1D polymeric 3d–4f Schiff base complexes with OCN and SCN ligands. Dalton Trans. 9595–9602 (2009)

  131. Wang, H., Zhang, D., Ni, Z.-H., Li, X., Tian, L., Jiang, J.: Synthesis, crystal structures, and luminescent properties of phenoxo-bridged heterometallic trinuclear propeller- and sandwich-like Schiff-base complexes. Inorg. Chem. 48, 5946–5956 (2009)

    Article  CAS  Google Scholar 

  132. Akine, S., Taniguchi, T., Nabeshima, T.: Heterometallic Zn2La and ZnLu complexes formed by site-selective transmetalation of a dimeric homotrinuclear zinc(II) complex. Chem. Lett. 35, 604–605 (2006)

    Article  CAS  Google Scholar 

  133. Cunningham, D., McArdle, P., Mitchell, M., Ní Chonchubhair, N., O’Gara, M., Franceschi, F., Floriani, C.: Adduct formation between alkali metal ions and divalent metal salicylaldimine complexes having methoxy substituents. A structural investigation. Inorg. Chem. 39, 1639–1649 (2000)

    Article  CAS  Google Scholar 

  134. Xiao, H.-Q., Zhang, H.: {μ-6,6′-Dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato-1κ4 O 6,O 1,\({{O^1}^\prime}\!,\!{{O^6}^\prime} \):2κ4 O 1,N,\({N^{\prime}} {{O^1}^\prime}\)}-(methanol-1κO(perchlorato-1κO)-copper(II)sodium(I). Acta Crystallogr. E65, m445 (2009)

    CAS  Google Scholar 

  135. Xiao, H.-Q.: {μ-6,6′-Dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato-1κ4 O 6,O 1,\({{O^1}^\prime}\!,\!{{O^6}^\prime} \):2κ4 O 1,N,\({N^{\prime}} {{O^1}^\prime}\)}-(methanol-1κO(perchlorato-1κO)-nickel(II)sodium. Acta Crystallogr. E65, 400 (2009)

    Google Scholar 

  136. Bian, J.: {μ-6,6′-Dimethoxy-2,2′-[1,2-phenylenebis(nitrilomethylidyne)]diphenolato}methanolcopper(II)sodium(I). Acta Crystallogr. E64, 625 (2008)

    Google Scholar 

  137. Fellah, F.Z.C., Costes, J.-P., Dahan, F., Duhayon, C., Tuchagues, J.-P.: Varying the metal/metal ratio in related Cu–Ca complexes. Polyhedron 26, 4209–4215 (2007)

    Article  CAS  Google Scholar 

  138. Chai, W.-L., Jin, W.-J., Lü, X.-Q., Bi, W.-Y., Song, J.-R., Wong, W.-K., Bao, F.: Formation and luminescence of 1D helical polymeric excimer from Pt-MeO-salen precursor. Inorg. Chem. Commun. 11, 699–702 (2008)

    Article  CAS  Google Scholar 

  139. Lü, X., Wong, W.-Y., Wong, W.-K.: Self-assembly of luminescent platinum-salen Schiff-base complexes. Eur. J. Inorg. Chem. 523–528 (2008)

  140. Branzea, D.G., Guerri, A., Fabelo, O., Ruiz-Pérez, C., Chamoreau, L.-M., Sangregorio, C., Caneschi, A., Andruh, M.: Heterobinuclear complexes as tectons in designing coordination polymers. Cryst. Growth Des. 8, 941–949 (2008)

    Article  CAS  Google Scholar 

  141. Yang, X., Jones, R.A.: Anion dependent self-assembly of “Tetra-Decker” and “Triple-Decker” luminescent Tb(III) salen complexes. J. Am. Chem. Soc. 127, 7686–7687 (2005)

    Article  CAS  Google Scholar 

  142. Yang, X., Hahn, B.P., Jones, R.A., Wong, W.-K., Stevenson, K.J.: Synthesis of an octanuclear Eu(III) cage from Eu4 2+: chloride anion encapsulation, luminescence, and reversible MeOH adsorption via a porous supramolecular architecture. Inorg. Chem. 46, 7050–7054 (2007)

    Article  CAS  Google Scholar 

  143. Sanmartín, J., Bermejo, M.R., García-Deibe, A.M., Llamas-Saiz, A.L.: Unusual high nuclearity and pseudo-tetrahedral Zn8O13 core found in a self-assembled complex. Chem. Commun. 795–796 (2000)

  144. Sanmartín, J., Bermejo, M.R., García-Deibe, A.M., Rivas, I.M., Fernández, A.R.: Zinc and cadmium complexes with versatile hexadentate Schiff base ligands. The supramolecular self-assembly of a 3-D cage-like complex. J. Chem. Soc. Dalton Trans. 4174–4181 (2000)

  145. Akine, S., Dong, W., Nabeshima, T.: Octanuclear zinc(II) and cobalt(II) clusters produced by cooperative tetrameric assembling of oxime chelate ligands. Inorg. Chem. 45, 4677–4684 (2006)

    Article  CAS  Google Scholar 

  146. Van Staveren, C.J., Fenton, D.E., Reinhoudt, D.N., van Eerden, J., Harkema, S.: Cocomplexation of urea and UO2 2+ in a Schiff base macrocycle: a mimic of an enzyme binding site. J. Am. Chem. Soc. 109, 3456–3458 (1987)

    Article  Google Scholar 

  147. Van Staveren, C.J., van Eerden, J., van Veggel, F.C.J.M., Harkema, S., Reinhoudt, D.N.: Cocomplexation of neutral guests and electrophilic metal cations in synthetic macrocyclic hosts. J. Am. Chem. Soc. 110, 4994–5008 (1988)

    Article  Google Scholar 

  148. Van Veggel, F.C.J.M., Harkema, S., Bos, M., Verboom, W., van Staveren, C.J., Gerritsma, G.J., Reinhoudt, D.N.: Metallomacrocycles: synthesis, X-ray structure, electrochemistry, and ESR spectroscopy of mononuclear and heterodinuclear complexes. Inorg. Chem. 28, 1133–1148 (1989)

    Article  Google Scholar 

  149. Van Veggel, F.C.J.M., Harkema, S., Bos, M., Verboom, W., Klein Woolthuis, G., Reinhoudt, D.N.: Incorporation of N–O bonds in metallomacrocycles: synthesis, X-ray structure, and electrochemistry of hetero-dinuclear complexes. J. Org. Chem. 54, 2351–2359 (1989)

    Article  Google Scholar 

  150. Nijenhuis, W.F., van Doorn, A.R., Reichwein, A.M., de Jong, F., Reinhoudt, D.N.: Urea transport by macrocyclic carriers through a supported liquid membrane. J. Am. Chem. Soc. 113, 3607–3608 (1991)

    Article  CAS  Google Scholar 

  151. Van Doorn, A.R., Schaafstra, R., Bos, M., Harkema, S., van Eerden, J., Verboom, W., Reinhoudt, D.N.: molecular recognition of polar neutral molecules by metallomacrocycles: synthesis, 1H NMR spectroscopy, X-ray structure, electrochemistry, and ab initio calculations. J. Org. Chem. 56, 6083–6094 (1991)

    Article  Google Scholar 

  152. Horwitz, C.P., Ciringh, Y.: Synthesis and electrochemical properties of oxo-bridged manganese dimers incorporating alkali and alkaline earth cations. Inorg. Chim. Acta 225, 191–200 (1994)

    Article  CAS  Google Scholar 

  153. Casellato, U., Tamburini, S., Tomasin, P., Vigato, P.A.: Preparation, properties and X-ray structure of a cyclic compartmental Schiff base and related complexes containing d- or f-metal ions. Inorg. Chim. Acta 262, 117–121 (1997)

    Article  CAS  Google Scholar 

  154. Brianese, N., Casellato, U., Tamburini, S., Tomasin, P., Vigato, P.A.: Asymmetric compartmental macrocyclic ligands and related mononuclear and hetero-dinuclear complexes with d- and/or f-metal ions. Inorg. Chim. Acta 293, 178–194 (1999)

    Article  CAS  Google Scholar 

  155. Arion, V.B., Wignacourt, J.P., Conflant, P., Drache, M., Lagrenee, M., Cousin, O., Vezin, H., Ricart, G., Joppek, W., Klein, H.-W.: New metallomacrocyclic complexes based on acetamidrazone. Inorg. Chim. Acta 303, 228–237 (2000)

    Article  CAS  Google Scholar 

  156. Cassol, A., Di Bernardo, P., Zanonato, P.L., Tamburini, S., Tomasin, P., Vigato, P.A.: New complexes of ditopic ligands with “d” and/or “s” metal ions. Supramol. Chem. 13, 469–488 (2001)

    Article  CAS  Google Scholar 

  157. Caneschi, A., Sorace, L., Casellato, U., Tomasin, P., Vigato, P. A.: d- or f-Mononuclear and related heterodinuclear complexes with [1 + 1] asymmetric compartmental macrocycles. Eur. J. Inorg. Chem. 3887–3900 (2004)

  158. Van Veggel, F.C.J.M., Bos, M., Verboom, W., Reinhoudt, D.N.: Electrochemical reduction of benzyl chloride catalyzed by a hetero-dinuclear complex. Recl. Trav. Chim. Pays-Bas 109, 515–517 (1990)

    Article  Google Scholar 

  159. Martinez, A., Hemmert, C., Meunier, B.: A macrocyclic chiral manganese(III) Schiff base complex as an efficient catalyst for the asymmetric epoxidation of olefins. J. Catal. 234, 250–255 (2005)

    Article  CAS  Google Scholar 

  160. Martinez, A., Hemmert, C., Gornitzka, H., Meunier, B.: Synthesis and activity of macrocyclized chiral Mn(III)–Schiff-base epoxidation catalysts. J. Organomet. Chem. 690, 2163–2171 (2005)

    Article  CAS  Google Scholar 

  161. Martinez, A., Hemmert, C., Loup, C., Barré, G., Meunier, B.: Synthesis of new macrocyclic chiral manganese(III) Schiff bases as catalysts for asymmetric epoxidation. J. Org. Chem. 71, 1449–1457 (2006)

    Article  CAS  Google Scholar 

  162. Liu, R., Liu, I.Y., Bi, X., Thompson, R.F., Doctrow, S.R., Malfroy, B., Baudry, M.: Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc. Natl. Acad. Sci. USA 100, 8526–8531 (2003)

    Article  CAS  Google Scholar 

  163. Pilkington, N.H., Robson, R.: Complexes of binucleating ligands. Aust. J. Chem. 23, 2225–2236 (1970)

    CAS  Google Scholar 

  164. Guerriero, P., Tamburini, S., Vigato, P.A.: From mononuclear to polynuclear macrocyclic or macroacyclic complexes. Coord. Chem. Rev. 139, 17–243 (1995)

    Article  CAS  Google Scholar 

  165. Okawa, H., Furutachi, H., Fenton, D.E.: Heterodinuclear metal complexes of phenol-based compartmental macrocycles. Coord. Chem. Rev. 174, 51–75 (1998)

    Article  CAS  Google Scholar 

  166. Vigato, P.A., Tamburini, S.: The challenge of cyclic and acyclic Schiff bases and related derivatives. Coord. Chem. Rev. 248, 1717–2128 (2004)

    Article  CAS  Google Scholar 

  167. Vigato, P.A., Tamburini, S.: Advances in acyclic compartmental ligands and related complexes. Coord. Chem. Rev. 252, 1871–1995 (2008)

    Article  CAS  Google Scholar 

  168. Reichwein, A.M., Verboom, W., Reinhoudt, D.N.: Binaphthyl metallomacrocycles for complexation of neutral molecules. Recl. Trav. Chim. Pays-Bas 112, 358–366 (1993)

    Article  CAS  Google Scholar 

  169. Reichwein, A.M., Verboom, W., Reinhoudt, D.N.: Functionalized binaphthyl salophen crown ethers as models for the enzyme urease. Recl. Trav. Chim. Pays-Bas 112, 595–607 (1993)

    Article  CAS  Google Scholar 

  170. Van Veggel, F.C.J.M., Noorlander-Bunt, H.G., Jorgensen, W.L., Reinhoudt, D.N.: Preorganized metallomacrocycles: improved binding and selectivity of NH3 over primary amines. J. Org. Chem. 63, 3554–3559 (1998)

    Article  Google Scholar 

  171. Reichwein, A.M., Verboom, W., Harkema, S., Spek, A.L., Reinhoudt, D.N.: Calix salophen crown ethers as receptors for neutral molecules. J. Chem. Soc. Perkin Trans. 2, 1167–1172 (1994)

    Google Scholar 

  172. Rudkevich, D.M., Verboom, W., Brzozka, Z., Palys, M.J., Stauthamer, W.P.R.V., van Hummel, G.J., Franken, S.M., Harkema, S., Engbersen, J.F.J., Reinhoudt, D.N.: Functionalized UO2 salenes: neutral receptors for anions. J. Am. Chem. Soc. 116, 4341–4351 (1994)

    Article  CAS  Google Scholar 

  173. Rudkevich, D.M., Verboom, W., Reinhoudt, D.N.: Calix[4]arene salenes: a bifunctional receptor for NaH2PO4. J. Org. Chem. 59, 3683–3686 (1994)

    Article  CAS  Google Scholar 

  174. Rudkevich, D.M., Mercer-Chalmers, J.D., Verboom, W., Ungaro, R., de Jong, F., Reinhoudt, D.N.: Bifunctional recognition: simultaneous transport of cations and anions through a supported liquid membrane. J. Am. Chem. Soc. 117, 6124–6125 (1995)

    Article  CAS  Google Scholar 

  175. Bassetti, M., Calenne, A., Mastrofrancesco, L., Salamone, M., Bocelli, G., Cantoni, A., Musatti, A.: Synthesis and characterization of a novel heteroditopic macrocyclic system—monometallic nickel(II) and uranyl complexes and their corresponding heterobimetallic carbonylrhodium(I) complexes. Eur. J. Inorg. Chem. 914–925 (2006)

  176. Yoon, I., Goto, M., Shimizu, T., Lee, S.S., Asakawa, M.: Synthesis and characterisation of macrocyclic palladium(II)–sodium(I) complexes: generation of an unusual metal-mediated electron delocalisation. Dalton Trans. 1513–1515 (2004)

  177. Yoon, I., Narita, M., Shimizu, T., Asakawa, M.: Threading-followed-by-shrinking protocol for the synthesis of a [2]rotaxane incorporating a Pd(II)–salophen moiety. J. Am. Chem. Soc. 126, 16740–16741 (2004)

    Article  CAS  Google Scholar 

  178. Yoon, I., Narita, M., Goto, M., Shimizu, T., Asakawa, M.: Synthesis of a [2]rotaxane incorporating a Ni(II)–salen moiety: evidence of ring-opening-and-closing protocol. Org. Lett. 8, 2341–2344 (2006)

    Article  CAS  Google Scholar 

  179. Van Veggel, F.C.J.M., Bos, M., Harkema, S., Verboom, W., Reinhoudt, D.N.: The organization of two “soft” (Cu2+, Ni2+) metal centers in heterotrinuclear complexes of a macrocyclic ligand by cocomplexation with Ba2+. Angew. Chem. Int. Ed. Engl. 28, 746–748 (1989)

    Article  Google Scholar 

  180. Van Veggel, F.C.J.M., Bos, M., Harkema, S., van de Bovenkamp, H., Verboom, W., Reedijk, J., Reinhoudt, D.N.: Macrocyclic trinucleating ligands for the cocomplexation of two “soft” (Cu2+, Ni2+, or Zn2+) metal centers and one “hard” (Ba2+ or Cs+) metal center. J. Org. Chem. 56, 225–235 (1991)

    Article  Google Scholar 

  181. Gao, F., Ruan, W.-J., Chen, J.-M., Zhang, Y.-H., Zhu, Z.-A.: Spectroscopy, NMR and DFT studies on molecular recognition of crown ether bridged chiral heterotrinuclear salen Zn(II) complex. Spectrochim. Acta 62, 886–895 (2005)

    Article  CAS  Google Scholar 

  182. Akine, S., Utsuno, F., Nabeshima, T.: Highly efficient regulation of cation recognition and promotion of self-assembly by metalation of a macrocyclic bis(N2O2) ligand with nickel(II). Chem. Commun. 46, 1029–1031 (2010)

    Article  CAS  Google Scholar 

  183. Pedersen, C.J.: Crystalline salt complexes of macrocyclic polyethers. J. Am. Chem. Soc. 92, 386–391 (1970)

    Article  CAS  Google Scholar 

  184. Pecoraro, V.L., Stemmler, A.J., Gibney, B.R., Bodwin, J.J., Wang, H., Kampf, J.W., Barwinski, A.: Metallacrowns: a new class of molecular recognition agents. In: Karlin, K.D. (ed.) Progress in Inorganic Chemistry, vol. 45, pp. 83–177. Wiley, New York (1997)

    Chapter  Google Scholar 

  185. Bodwin, J.J., Cutland, A.D., Malkani, R.G., Pecoraro, V.L.: The development of chiral metallacrowns into anion recognition agents and porous materials. Coord. Chem. Rev. 216–217, 489–512 (2001)

    Article  Google Scholar 

  186. Huck, W.T.S., van Veggel, F.C.J.M., Reinhoudt, D.N.: Synthesis of new macrocyclic ligands for hetero-multinuclear transition-metal complexes. Recl. Trav. Chim. Pays-Bas 114, 273–276 (1995)

    Article  CAS  Google Scholar 

  187. Akine, S., Taniguchi, T., Nabeshima, T.: Synthesis and crystal structure of a novel triangular macrocyclic molecule, tris(H2saloph), and its water complex. Tetrahedron Lett. 42, 8861–8864 (2001)

    Article  CAS  Google Scholar 

  188. Rowan, S.J., Cantrill, S.J., Cousins, G.R.L., Sanders, J.K.M., Stoddart, J.F.: Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41, 898–952 (2002)

    Article  Google Scholar 

  189. Akine, S., Hashimoto, D., Saiki, T., Nabeshima, T.: Synthesis and structure of polyhydroxyl rigid triangular nano-macrocyclic imine having multiple hydrogen-bonding sites. Tetrahedron Lett. 45, 4225–4227 (2004)

    Article  CAS  Google Scholar 

  190. Kwit, M., Zabicka, B., Gawronski, J.: Synthesis of chiral large-ring triangular salen ligands and structural characterization of their complexes. Dalton Trans. 6783–6789 (2009)

  191. Ma, C., Lo, A., Abdolmaleki, A., MacLachlan, M.J.: Synthesis and metalation of novel fluorescent conjugated macrocycles. Org. Lett. 6, 3841–3844 (2004)

    Article  CAS  Google Scholar 

  192. Ma, C.T.L., MacLachlan, M.J.: Supramolecular assembly and coordination-assisted deaggregation of multimetallic macrocycles. Angew. Chem. Int. Ed. 44, 4178–4182 (2005)

    Article  CAS  Google Scholar 

  193. Boden, B.N., Hui, J.K.-H., MacLachlan, M.J.: Social and antisocial [3 + 3] Schiff base macrocycles with isomeric backbones. J. Org. Chem. 73, 8069–8072 (2008)

    Article  CAS  Google Scholar 

  194. Gallant, A.J., MacLachlan, M.J.: Ion-induced tubular assembly of conjugated Schiff-base macrocycles. Angew. Chem. Int. Ed. 42, 5307–5310 (2003)

    Article  CAS  Google Scholar 

  195. Gallant, A.J., Patrick, B.O., MacLachlan, M.J.: Mild and selective reduction of imines: formation of an unsymmetrical macrocycle. J. Org. Chem. 69, 8739–8744 (2004)

    Article  CAS  Google Scholar 

  196. Gallant, A.J., Hui, J.K.-H., Zahariev, F.E., Wang, Y.A., MacLachlan, M.J.: Synthesis, structure, and computational studies of soluble conjugated multidentate macrocycles. J. Org. Chem. 70, 7936–7946 (2005)

    Article  CAS  Google Scholar 

  197. Nabeshima, T., Miyazaki, H., Iwasaki, A., Akine, S., Saiki, T., Ikeda, C., Sato, S.: Efficient formation of homo and hetero metal clusters by triangular trisaloph ligand as a partial template. Chem. Lett. 35, 1070–1071 (2006)

    Article  CAS  Google Scholar 

  198. Gallant, A.J., Chong, J.H., MacLachlan, M.J.: Heptametallic bowl-shaped complexes derived from conjugated Schiff-base macrocycles: synthesis, characterization, and X-ray crystal structures. Inorg. Chem. 45, 5248–5250 (2006)

    Article  CAS  Google Scholar 

  199. Frischmann, P.D., MacLachlan, M.J.: Capsule formation in novel cadmium cluster metallocavitands. Chem. Commun. 4480–4482 (2007)

  200. Nabeshima, T., Miyazaki, H., Iwasaki, A., Akine, S., Saiki, T., Ikeda, C.: Multi-metal complexation and partially templated synthesis of metal clusters by using triangular trisaloph ligands. Tetrahedron 63, 3328–3333 (2007)

    Article  CAS  Google Scholar 

  201. Frischmann, P.D., Facey, G.A., Ghi, P.A., Gallant, A.J., Bryce, D.L., Lelj, F., MacLachlan, M.J.: Capsule formation, carboxylate exchange, and DFT exploration of cadmium cluster metallocavitands: highly dynamic supramolecules. J. Am. Chem. Soc. 132, 3893–3908 (2010)

    Article  CAS  Google Scholar 

  202. Frischmann, P.D., Gallant, A.J., Chong, J.H., MacLachlan, M.J.: Zinc carboxylate cluster formation in conjugated metallomacrocycles: evidence for templation. Inorg. Chem. 47, 101–112 (2008)

    Article  CAS  Google Scholar 

  203. Akine, S., Sunaga, S., Taniguchi, T., Miyazaki, H., Nabeshima, T.: Core/shell oligometallic template synthesis of macrocyclic hexaoxime. Inorg. Chem. 46, 2959–2961 (2007)

    Article  CAS  Google Scholar 

  204. Akine, S., Taniguchi, T., Nabeshima, T.: Synthesis and characterization of novel ligands 1,2-bis(salicylideneaminooxy)ethanes. Chem. Lett. 682–683 (2001)

  205. Akine, S., Taniguchi, T., Dong, W., Masubuchi, S., Nabeshima, T.: Oxime-based salen-type tetradentate ligands with high stability against imine metathesis reaction. J. Org. Chem. 70, 1704–1711 (2005)

    Article  CAS  Google Scholar 

  206. Korpela, T.K., Mäkelä, M.J.: Spectrophotometric measurement of hydroxylamine and its O-alkyl derivatives. Anal. Biochem. 110, 251–257 (1981)

    Article  CAS  Google Scholar 

  207. McKee, V., Shepard, W.B.: X-ray structural analysis of a tetra-manganese(II) complex of a new (4 × 4) Schiff-base macrocycle incorporating a cubane-like Mn4(alkoxy)4 Core. J. Chem. Soc. Chem. Commun. 158–159 (1985)

  208. Bell, M., Edwards, A.J., Hoskins, B.F., Kachab, E.H., Robson, R.: Synthesis and crystal structure of a complex of a tetranucleating macrocyclic ligand which binds four NiII ions in a square arrangement with a μ4-hydroxo group at the centre. J. Chem. Soc. Chem. Commun. 1852–1853 (1987)

  209. McKee, V., Tandon, S.S.: The X-ray crystal structure and some properties of a planar tetracopper(II) macrocyclic complex containing a μ4-hydroxo bridge. J. Chem. Soc., Chem. Commun. 385–387 (1988)

  210. Asato, E., Furutachi, H., Kawahashi, T., Mikuriya, M.: Polynuclear zinc(II) complexes of phenol–imine and –amine macrocycles. J. Chem. Soc. Dalton Trans. 3897–3904 (1995)

  211. Hoskins, B.F., Robson, R., Smith, P.: Synthesis and crystal structure of a complex in which a single macrocyclic ligand binds six CuII centres in a cylohexane boat arrangement. J. Chem. Soc. Chem. Commun. 488–489 (1990)

  212. Tandon, S.S., Thompson, L.K., Bridson, J.N.: A novel antiferromagnetically coupled, dimeric, dodecanuclear copper(II) complex involving two macrocyclic ligands each with a ‘benzene-like’ arrangement of six copper centres. J. Chem. Soc. Chem. Commun. 911–913 (1992)

  213. Saalfrank, R.W., Löw, N., Hampel, F., Stachel, H.-D.: The first metallacrown ether sandwich complex. Angew. Chem. Int. Ed. Engl. 35, 2209–2210 (1996)

    Article  CAS  Google Scholar 

  214. Saalfrank, R.W., Löw, N., Kareth, S., Seitz, V., Hampel, F., Stalke, D., Teichert, M.: Crown ethers, double-decker, and sandwich complexes: cation-mediated formation of metallatopomer coronates. Angew. Chem. Int. Ed. 37, 172–175 (1998)

    Article  CAS  Google Scholar 

  215. Akine, S., Sunaga, S., Nabeshima, T.: Multistep oligometal complexation of the macrocyclic tris(N2O2) hexaoxime ligand. Chem. Eur. J. 17, 6853–6861 (2011)

    Google Scholar 

  216. Yamashita, A., Watanabe, A., Akine, S., Nabeshima, T., Nakano, M., Yamamura, T., Kajiwara, T.: Wheel-shaped ErIIIZn II3 single-molecule magnet: a macrocyclic approach to designing magnetic anisotropy. Angew. Chem. Int. Ed. 50, 4016–4019 (2011)

    Article  CAS  Google Scholar 

  217. Feltham, H.L.C., Lan, Y., Klöwer, F., Ungur, L., Chibotaru, L.F., Powell, A.K., Brooker, S.: A non-sandwiched macrocyclic monolanthanide single-molecule magnet: the key role of axiality. Chem. Eur. J. 17, 4362–4365 (2011)

    Article  CAS  Google Scholar 

  218. Dai, Y., Katz, T.J., Nichols, D.A.: Synthesis of a helical conjugated ladder polymer. Angew. Chem. Int. Ed. Engl. 35, 2109–2111 (1996)

    Article  CAS  Google Scholar 

  219. Zhang, H.-C., Huang, W.-S., Pu, L.: Biaryl-based macrocyclic and polymeric chiral (salophen)Ni(II) complexes: synthesis and spectroscopic study. J. Org. Chem. 66, 481–487 (2001)

    Article  CAS  Google Scholar 

  220. Furusho, Y., Maeda, T., Takeuchi, T., Makino, N., Takata, T.: A rational design of helix: absolute helix synthesis by binaphthyl-salen fusion. Chem. Lett. 1020–1021 (2001)

  221. Zhang, F., Bai, S., Yap, G.P.A., Tarwade, V., Fox, J.M.: Abiotic metallofoldamers as electrochemically responsive molecules. J. Am. Chem. Soc. 127, 10590–10599 (2005)

    Article  CAS  Google Scholar 

  222. Dong, Z., Karpowicz Jr., R.J., Bai, S., Yap, G.P.A., Fox, J.M.: Control of absolute helicity in single-stranded abiotic metallofoldamers. J. Am. Chem. Soc. 128, 14242–14243 (2006)

    Article  CAS  Google Scholar 

  223. Dong, Z., Yap, G.P.A., Fox, J.M.: trans-cyclohexane-1,2-diamine is a weak director of absolute helicity in chiral nickel–salen complexes. J. Am. Chem. Soc. 129, 11850–11853 (2007)

    Article  CAS  Google Scholar 

  224. Akine, S., Taniguchi, T., Nabeshima, T.: Novel synthetic approach to trinuclear 3d–4f complexes: specific exchange of the central metal of a trinuclear zinc(II) complex of a tetraoxime ligand with a lanthanide(III) ion. Angew. Chem. Int. Ed. 41, 4670–4673 (2002)

    Article  CAS  Google Scholar 

  225. Akine, S., Taniguchi, T., Nabeshima, T.: Acyclic bis(N2O2 chelate) ligand for trinuclear d-block homo- and heterometal complexes. Inorg. Chem. 47, 3255–3264 (2008)

    Article  CAS  Google Scholar 

  226. Hunter, C.A., Anderson, H.L.: What is cooperativity? Angew. Chem. Int. Ed. 48, 7488–7499 (2009)

    Article  CAS  Google Scholar 

  227. Akine, S., Taniguchi, T., Saiki, T., Nabeshima, T.: Ca2+- and Ba2+-selective receptors based on site-selective transmetalation of multinuclear polyoxime–zinc(II) complexes. J. Am. Chem. Soc. 127, 540–541 (2005)

    Article  CAS  Google Scholar 

  228. Akine, S., Taniguchi, T., Nabeshima, T.: Helical metallohost–guest complexes via site-selective transmetalation of homotrinuclear complexes. J. Am. Chem. Soc. 128, 15765–15774 (2006)

    Article  CAS  Google Scholar 

  229. Atkins, A.J., Black, D., Blake, A.J., Marin-Becerra, A., Parsons, S., Ruiz-Ramirez, L., Schröder, M.: Schiff-base compartmental macrocyclic complexes. Chem. Commun. 457–464 (1996)

  230. Furutachi, H., Fujinami, S., Suzuki, M., Okawa, H.: Dinuclear CoIIMII (M = Pb or Co) complexes having a “Co(salen)” entity in a macrocyclic framework: ligand modulation effect and neighboring metal(II) effect upon oxygenation at the “Co(salen)” center. J. Chem. Soc. Dalton Trans. 2761–2769 (2000)

  231. Yonemura, M., Arimura, K., Inoue, K., Usuki, N., Ohba, M., Okawa, H.: Coordination-position isomeric MIICuII and CuIIMII (M = Co, Ni, Zn) complexes derived from macrocyclic compartmental ligands. Inorg. Chem. 41, 582–589 (2002)

    Article  CAS  Google Scholar 

  232. Tsien, R.Y.: New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19, 2396–2404 (1980)

    Article  CAS  Google Scholar 

  233. Suzuki, K., Watanabe, K., Matsumoto, Y., Kobayashi, M., Sato, S., Siswanta, D., Hisamoto, H.: Design and synthesis of calcium and magnesium ionophores based on double-armed diazacrown ether compounds and their application to an ion-sensing component for an ion-selective electrode. Anal. Chem. 67, 324–334 (1995)

    Article  CAS  Google Scholar 

  234. Akine, S., Akimoto, A., Shiga, T., Oshio, H., Nabeshima, T.: Synthesis, stability, and complexation behavior of isolable salen-type N2S2 and N2SO lignads based on thiol and oxime functionalities. Inorg. Chem. 47, 875–885 (2008)

    Article  CAS  Google Scholar 

  235. Akine, S., Akimoto, A., Nabeshima, T.: Synthesis of Ag+-selective dipalladium(II) metallohost based on O-alkyloxime bis(N2SO) ligands. Phosphorus Sulfur Silicon Relat. Elem. 185, 1000–1007 (2010)

    Article  CAS  Google Scholar 

  236. Akine, S., Taniguchi, T., Matsumoto, T., Nabeshima, T.: Guest-dependent inversion rate of a tetranuclear single metallohelicate. Chem. Commun. 4961–4963 (2006)

  237. Akine, S., Matsumoto, T., Sairenji, S., Nabeshima, T.: Synthesis of acyclic tetrakis- and pentakis(N2O2) ligands for single-helical heterometallic complexes with a greater number of winding turns. Supramol. Chem. 23, 106–112 (2011)

    Article  CAS  Google Scholar 

  238. Akine, S., Morita, Y., Utsuno, F., Nabeshima, T.: Multiple folding structures mediated by metal coordination of acyclic multidentate ligand. Inorg. Chem. 48, 10670–10678 (2009)

    Article  CAS  Google Scholar 

  239. Akine, S., Utsuno, F., Nabeshima, T.: Visible and near-infrared luminescence of helical zinc(II)-lanthanide(III) trinuclear complexes having acyclic bis(N2O2) oxime ligand. IOP Conf. Ser.: Mater. Sci. Eng. 1, 012009 (2009)

  240. Constable, E.C.: Oligopyridines as helicating ligands. Tetrahedron 48, 10013–10059 (1992)

    Article  CAS  Google Scholar 

  241. Lehn, J.-M.: Supramolecular Chemistry, Concepts and Perspectives. Wiley-VCH, Weinheim (1995)

    Book  Google Scholar 

  242. Piguet, C., Bernardinelli, G., Hopfgartner, G.: Helicates as versatile supramolecular complexes. Chem. Rev. 97, 2005–2062 (1997)

    Article  CAS  Google Scholar 

  243. Akine, S., Taniguchi, T., Nabeshima, T.: Chiral single-stranded metallohelix: metal-mediated folding of linear oligooxime ligand. Tetrahedron Lett. 47, 8419–8422 (2006)

    Article  CAS  Google Scholar 

  244. Martin, R.H.: Die Helicene. Angew. Chem. 86, 727–738 (1974)

    Article  CAS  Google Scholar 

  245. Martin, R.H., Marchant, M.-J.: Thermal racemisation of [6], [7], [8] and [9]helicene. Tetrahedron Lett. 35, 3707–3708 (1972)

    Article  Google Scholar 

  246. Martin, R.H., Marchant, M.J.: Thermal racemisation of hepta-, octa-, and nonahelicene. kinetic results, reaction path and experimental proofs that the racemisation of hexa- and heptahelicene does not involve an intramolecular double Diels–Alder reaction. Tetrahedron 30, 347–349 (1974)

    Article  CAS  Google Scholar 

  247. Akine, S., Matsumoto, T., Nabeshima, T.: Spontaneous formation of a chiral supramolecular superhelix in the crystalline state using a single-stranded tetranuclear metallohelicate. Chem. Commun. 4604–4606 (2008)

  248. Akine, S., Hotate, S., Matsumoto, T., Nabeshima, T.: Spontaneous enrichment of one-handed helices by dissolution of quasiracemic crystals of a tetranuclear single helical complex. Chem. Commun. 47, 2925–2927 (2011)

    Article  CAS  Google Scholar 

  249. Brands, K.M.J., Davies, A.J.: Crystallization-induced diastereomer transformations. Chem. Rev. 106, 2711–2733 (2006)

    Article  CAS  Google Scholar 

  250. Bauer, W.R., Crick, F.H.C., White, J.H.: Supercoiled DNA. Sci. Am. 243, 118–133 (1980)

    CAS  Google Scholar 

  251. Gruber, M., Lupas, A.N.: Historical review: another 50th anniversary–new periodicities in coiled coils. Trends Biochem. Sci. 28, 679–685 (2003)

    Article  CAS  Google Scholar 

  252. Akagi, K.: Hyperstructured polyacetylene. Polym. Int. 56, 1192–1199 (2007)

    Article  CAS  Google Scholar 

  253. George, S.J., Ajayaghosh, A., Jonkheijm, P., Schenning, A.P.H.J., Meijer, E.W.: Coiled-coil gel nanostructures of oligo(p-phenylenevinylene)s: gelation-induced helix transition in a higher-order supramolecular self-assembly of a rigid π-conjugated system. Angew. Chem. Int. Ed. 43, 3422–3425 (2004)

    Article  CAS  Google Scholar 

  254. Baum, G., Constable, E.C., Fenske, D., Housecroft, C.E., Kulke, T.: Solvent control in the formation of mononuclear and dinuclear double-helical silver(I)-2,2′:6′,2″-terpyridine complexes. Chem. Commun. 2659–2660 (1998)

  255. Baum, G., Constable, E.C., Fenske, D., Housecroft, C.E., Kulke, T.: Chiral 1,2-ethanediyl-spaced quaterpyridines give a library of cyclic and double helicates with copper(I). Chem. Commun. 195–196 (1999)

  256. Saalfrank, R.W., Maid, H., Hampel, F., Peters, K.: Coordination polymers, 14. 1D- and 2D-coordination polymers from self-complementary building blocks: co-crystallization of (P)- and (M)-single-stranded diastereoisomers. Eur. J. Inorg. Chem. 1859–1867 (1999)

  257. Baum, G., Constable, E.C., Fenske, D., Housecroft, C.E., Kulke, T., Neuburger, M., Zehnder, M.: Regio- and diastereo-selective formation of dicopper(I) and disilver(I) double helicates with chiral 6-substituted 2,2′:6′,2″-terpyridines. J. Chem. Soc. Dalton Trans. 945–959 (2000)

  258. Jiang, H., Dolain, C., Léger, J.-M., Gornitzka, H., Huc, I.: Switching of chiral induction in helical aromatic oligoamides using solid state–solution state equilibrium. J. Am. Chem. Soc. 126, 1034–1035 (2004)

    Article  CAS  Google Scholar 

  259. Dolain, C., Jiang, H., Léger, J.-M., Guionneau, P., Huc, I.: Chiral induction in quinoline-derived oligoamide foldamers: assignment of helical handedness and role of steric effects. J. Am. Chem. Soc. 127, 12943–12951 (2005)

    Article  CAS  Google Scholar 

  260. Wiznycia, A.V., Desper, J., Levy, C.J.: Monohelical iron(II) and zinc(II) complexes of a (1R,2R)-cyclohexyl salen ligand with benz[a]anthryl sidearms. Inorg. Chem. 45, 10034–10036 (2006)

    Article  CAS  Google Scholar 

  261. Wallach, O.: Zur Kenntniss der Terpene und der ätherischen Oele. Justus Liebigs Ann. Chem. 286, 90–118 (1895)

    Article  CAS  Google Scholar 

  262. Brock, C.P., Schweizer, W.B., Dunitz, J.D.: On the validity of Wallach’s rule: on the density and stability of racemic crystals compared with their chiral counterparts. J. Am. Chem. Soc. 113, 9811–9820 (1991)

    Article  CAS  Google Scholar 

  263. Grubbs, R.H.: Olefin metathesis. Tetrahedron 60, 7117–7140 (2004)

    Article  CAS  Google Scholar 

  264. Akine, S., Kagiyama, S., Nabeshima, T.: Oligometallic template strategy for ring-closing olefin metathesis: highly cis- and trans-selective synthesis of a 32-membered macrocyclic tetraoxime. Inorg. Chem. 46, 9525–9527 (2007)

    Article  CAS  Google Scholar 

  265. Marsella, M.J., Maynard, H.D., Grubbs, R.H.: Template-directed ring-closing metathesis: synthesis and polymerization of unsaturated crown ether analogs. Angew. Chem. Int. Ed. Engl. 36, 1101–1103 (1997)

    Article  CAS  Google Scholar 

  266. Haak, R.M., Castilla, A.M., Belmonte, M.M., Escudero-Adán, E.C., Benet-Buchholz, J., Kleij, A.J.: Access to multinuclear salen complexes using olefin metathesis. Dalton Trans 40, 3352–3364 (2011)

    Article  CAS  Google Scholar 

  267. Akine, S., Kagiyama, S., Nabeshima, T.: Modulation of multimetal complexation behavior of tetraoxime ligand by covalent transformation of olefinic functionalities. Inorg. Chem. 49, 2141–2152 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author thanks the organizing committee of Host–Guest and Supramolecular Chemistry Society, Japan for giving him the HGCS Japan Award of Excellence 2010 and the opportunity to write this article. This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT). He especially thanks Prof. Tatsuya Nabeshima for his valuable suggestions and discussion about all the research on the novel ion recognition systems, Dr. Toshiyuki Saiki, Prof. Soichi Sato, Dr. Chusaku Ikeda, and Dr. Masaki Yamamura for their helpful suggestions and encouragement. He acknowledges Prof. Takayuki Kawashima and Prof. Kei Goto for allowing him to use X-ray diffractometer, Prof. Hiroki Oshio and Dr. Takuya Shiga for the magnetic measurements, Prof. Takashi Kajiwara for collaboration on single-molecule magnet, Dr. Kenji Yoza for X-ray structural analysis. He expresses his gratitude for all the members who have worked on the oligo(salamo) ion recognition systems and related projects. This article is selected for “HGCS Japan Award of Excellence 2010”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigehisa Akine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akine, S. Novel ion recognition systems based on cyclic and acyclic oligo(salen)-type ligands. J Incl Phenom Macrocycl Chem 72, 25–54 (2012). https://doi.org/10.1007/s10847-011-0026-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-0026-3

Keywords

Navigation