Skip to main content
Log in

A Combined Inverse Kinematics Algorithm Using FABRIK with Optimization

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Solving the inverse kinematics of redundant and hyper-redundant manipulators is more challenging because their kinematic redundancy leads to a more complicated mapping from end-effector pose to configuration space. A heuristic inverse kinematics solver, called Forward And Backward Reaching Inverse Kinematics (FABRIK), has been demonstrated to solve the inverse kinematics of complex chain systems with fast convergence and simple implementation. However, as the pose precision of the end-effector increases to a higher value, such as \( 10^{-6} \), FABRIK converges slowly in some configurations and thus exhibits unstable convergence behavior. Hence, this paper presents a novel inverse kinematics algorithm that combines FABRIK and the sequential quadratic programming (SQP) algorithm, in which the joint angles deduced by FABRIK will be taken as the initial seed of the SQP algorithm to realize fast convergence. Meanwhile, a universal and non-trivial mapping from joint Cartesian positions to joint angles is included to enable the extension of FABRIK to redundant and hyper-redundant manipulators while retaining its simplicity. With the \( 10^{-6} \) pose error constraint, quantitative tests on serial chain manipulators demonstrate that the combined algorithm outperforms FABRIK in terms of success rate and runtime. Meanwhile, some popular inverse kinematics algorithms are treated as benchmarks to compare with the combined algorithm. Finally, simulations using serial chain manipulators indicate the effectiveness of the combined algorithm on path tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolf, A., Brown, H.B., Casciola, R., Costa, A., Schwerin, M., Shamas, E., Choset, H.: A mobile hyper redundant mechanism for search and rescue tasks. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453), vol. 3, pp. 2889–2895 (2003). IEEE. https://doi.org/10.1109/IROS.2003.1249309

  2. Mu, Z., Liu, T., Xu, W., Lou, Y., Liang, B.: A hybrid obstacle-avoidance method of spatial hyper-redundant manipulators for servicing in confined space. Robotica 37(6), 998–1019 (2019). https://doi.org/10.1017/S0263574718001406

    Article  Google Scholar 

  3. Kim, J., Kwon, S.-I., Moon, Y., Kim, K.: Cable-movable rolling joint to expand workspace under high external load in a hyper-redundant manipulator. IEEE/ASME Trans. Mechatron. 27(1), 501–512 (2021). https://doi.org/10.1109/TMECH.2021.3067335

  4. Sadeghian, H., Zokaei, F., Hadian Jazi, S.: Constrained kinematic control in minimally invasive robotic surgery subject to remote center of motion constraint. J. Intell. Robot. Syst. 95(3), 901–913 (2019). https://doi.org/10.1007/s10846-018-0927-0

  5. Aristidou, A., Lasenby, J.: FABRIK: A fast, iterative solver for the inverse kinematics problem. Graph. Model. 73(5), 243–260 (2011). https://doi.org/10.1016/j.gmod.2011.05.003

    Article  Google Scholar 

  6. Aristidou, A., Chrysanthou, Y., Lasenby, J.: Extending FABRIK with model constraints. Comput. Animat. Virtual Worlds 27(1), 35–57 (2016). http://dx.doi.org/10.1002/cav.1630

  7. Beeson, P., Ames, B.: TRAC-IK: An open-source library for improved solving of generic inverse kinematics. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 928–935 (2015). IEEE. https://doi.org/10.1109/HUMANOIDS.2015.7363472

  8. Marić, F., Giamou, M., Hall, A.W., Khoubyarian, S., Petrović, I., Kelly, J.: Riemannian optimization for distance-geometric inverse kinematics. IEEE Trans. Robot. 38(3), 1703–1722 (2021). https://doi.org/10.1109/TRO.2021.3123841

    Article  Google Scholar 

  9. Ananthanarayanan, H., Ordóñez, R.: Real-time inverse kinematics of (2n+1) DOF hyper-redundant manipulator arm via a combined numerical and analytical approach. Mech. Mach. Theory 91, 209–226 (2015). https://doi.org/10.1016/j.mechmachtheory.2015.04.011

    Article  Google Scholar 

  10. Lloyd, S., Irani, R.A., Ahmadi, M.: Fast and robust inverse kinematics of serial robots using halley’s method. IEEE Trans. Robot. 38(5), 2768–2780 (2022). https://doi.org/10.1109/TRO.2022.3162954

    Article  Google Scholar 

  11. Zhao, J., Xu, Z., Zhao, L., Li, Y., Ma, L., Liu, H.: A novel inverse kinematics for solving repetitive motion planning of 7-DOF SRS manipulator. Robotica. 1–18 (2022). https://doi.org/10.1017/S0263574722001370

  12. Long, M.K.: Task-directed inverse kinematics for redundant manipulators. J. Intell. Robot. Syst. 6(2), 241–261 (1992). https://doi.org/10.1007/BF00248018

    Article  Google Scholar 

  13. Karpińska, J., Tchoń, K., Janiak, M.: Approximation of jacobian inverse kinematics algorithms: differential geometric vs. variational approach. J. Intell. Robot. Syst. 68(3), 211–224 (2012). https://doi.org/10.1007/s10846-012-9679-4

  14. Orocos kinematics and dynamics. [Online]. https://www.orocos.org/kdl.html. Accessed 20 Dec 2022

  15. Fletcher, R.: Practical Methods of Optimization, 2nd edn. John Wiley & Sons (1987)

  16. Xie, S., Sun, L., Wang, Z., Chen, G.: A speedup method for solving the inverse kinematics problem of robotic manipulators. Int. J. Adv. Rob. Syst. 19(3), 1–10 (2022). https://doi.org/10.1177/17298806221104602

    Article  Google Scholar 

  17. Shirafuji, S., Ota, J.: Kinematic synthesis of a serial robotic manipulator by using generalized differential inverse kinematics. IEEE Trans. Robot. 35(4), 1047–1054 (2019). https://doi.org/10.1109/TRO.2019.2907810

    Article  Google Scholar 

  18. Wang, L.-C., Chen, C.-C.: A combined optimization method for solving the inverse kinematics problems of mechanical manipulators. IEEE Trans. Robot. Autom. 7(4), 489–499 (1991). https://doi.org/10.1109/70.86079

    Article  Google Scholar 

  19. Martin, A., Barrientos, A., Del Cerro, J.: The Natural-CCD algorithm, a novel method to solve the inverse kinematics of hyper-redundant and soft robots. Soft Robot. 5(3), 242–257 (2018). https://doi.org/10.1089/soro.2017.0009

    Article  Google Scholar 

  20. Tao, S., Yang, Y.: Collision-free motion planning of a virtual arm based on the FABRIK algorithm. Robotica 35(6), 1431–1450 (2017). https://doi.org/10.1017/S0263574716000205

    Article  Google Scholar 

  21. Tao, S., Tao, H., Yang, Y.: Extending FABRIK with obstacle avoidance for solving the inverse kinematics problem. J. Rob. 2021 (2021). https://doi.org/10.1155/2021/5568702

  22. Gangqi, D., Panfeng, H., Yongjie, W., Rongsheng, L.: A modified forward and backward reaching inverse kinematics based incremental control for space manipulators. Chinese J. Aeronaut. (2021). https://doi.org/10.1016/j.cja.2021.08.014

    Article  Google Scholar 

  23. Kolpashchikov, D.Y., Laptev, N.V., Danilov, V.V., Skirnevskiy, I.P., Manakov, R.A., Gerget, O.M.: FABRIK-based inverse kinematics for multi-section continuum robots. In: 2018 18th International Conference on Mechatronics-Mechatronika (ME), pp. 1–8. IEEE (2018)

  24. Wu, H., Yu, J., Pan, J., Li, G., Pei, X.: CRRIK: A fast heuristic algorithm for the inverse kinematics of continuum robot. J. Intell. Robot. Syst. 105(3), 1–21 (2022). https://doi.org/10.1007/s10846-022-01672-7

    Article  Google Scholar 

  25. Santos, P.C., Freire, R.C.S., Carvalho, E.A.N., Molina, L., Freire, E.O.: M-FABRIK: A new inverse kinematics approach to mobile manipulator robots based on FABRIK. IEEE Access 8, 208836–208849 (2020). https://doi.org/10.1109/ACCESS.2020.3038424

    Article  Google Scholar 

  26. Xie, Y., Zhang, Z., Wu, X., Shi, Z., Chen, Y., Wu, B., Mantey, K.A.: Obstacle avoidance and path planning for multi-joint manipulator in a space robot. IEEE Access 8, 3511–3526 (2019). https://doi.org/10.1109/ACCESS.2019.2961167

    Article  Google Scholar 

  27. Wang, Y., Zhao, C., Wang, X., Zhang, P., Li, P., Liu, H.: Inverse kinematics of a 7-DOF spraying robot with 4R 3-DOF non-spherical wrist. J. Intell. Robot. Syst. 101(4), 1–17 (2021). https://doi.org/10.1007/s10846-021-01338-w

    Article  Google Scholar 

  28. Chirikjian, G.S., Burdick, J.W.: A modal approach to hyper-redundant manipulator kinematics. IEEE Trans. Robot. Autom. 10(3), 343–354 (1994). https://doi.org/10.1109/70.294209

    Article  Google Scholar 

  29. Zaplana, I., Hadfield, H., Lasenby, J.: Closed-form solutions for the inverse kinematics of serial robots using conformal geometric algebra. Mech. Mach. Theory 173, 104835 (2022). https://doi.org/10.1016/j.mechmachtheory.2022.104835

    Article  Google Scholar 

  30. Diankov, R.: Automated construction of robotic manipulation programs. PhD dissertation, Carnegie Mellon Univ. (2010)

  31. Shimizu, M., Kakuya, H., Yoon, W.-K., Kitagaki, K., Kosuge, K.: Analytical inverse kinematic computation for 7-DOF redundant manipulators with joint limits and its application to redundancy resolution. IEEE Trans. Robot. 24(5), 1131–1142 (2008). https://doi.org/10.1109/TRO.2008.2003266

    Article  Google Scholar 

  32. Yang, X., Zhao, Z., Xu, Z., Li, Y., Zhao, J., Liu, H.: General inverse kinematics method for 7-DOF offset manipulators based on arm angle parameterization. Acta Astronaut. 202, 263–277 (2023). https://doi.org/10.1016/j.actaastro.2022.10.026

    Article  Google Scholar 

  33. Xu, W., Mu, Z., Liu, T., Liang, B.: A modified modal method for solving the mission-oriented inverse kinematics of hyper-redundant space manipulators for on-orbit servicing. Acta Astronaut. 139, 54–66 (2017). https://doi.org/10.1016/j.actaastro.2017.06.015

    Article  Google Scholar 

  34. Parker, J.K., Khoogar, A.R., Goldberg, D.E.: Inverse kinematics of redundant robots using genetic algorithms. In: 1989 IEEE International Conference on Robotics and Automation, pp. 271–272. IEEE Computer Society (1989). https://doi.org/10.1109/ROBOT.1989.100000

  35. Morell, A., Tarokh, M., Acosta, L.: Inverse kinematics solutions for serial robots using support vector regression. In: 2013 IEEE International Conference on Robotics and Automation, pp. 4203–4208. IEEE (2013). https://doi.org/10.1109/ICRA.2013.6631171

  36. Falconi, R., Grandi, R., Melchiorri, C.: Inverse kinematics of serial manipulators in cluttered environments using a new paradigm of particle swarm optimization. IFAC Proc. 47(3), 8475–8480 (2014). https://doi.org/10.3182/20140824-6-ZA-1003.01094

    Article  Google Scholar 

  37. Starke, S., Hendrich, N., Magg, S., Zhang, J.: An efficient hybridization of genetic algorithms and particle swarm optimization for inverse kinematics. In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1782–1789. IEEE (2016). https://doi.org/10.1109/ROBIO.2016.7866587

  38. Starke, S., Hendrich, N., Krupke, D., Zhang, J.: Evolutionary multi-objective inverse kinematics on highly articulated and humanoid robots. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6959–6966. IEEE (2017). https://doi.org/10.1109/IROS.2017.8206620

  39. Starke, S., Hendrich, N., Zhang, J.: Memetic evolution for generic full-body inverse kinematics in robotics and animation. IEEE Trans. Evol. Comput. 23(3), 406–420 (2018). https://doi.org/10.1109/TEVC.2018.2867601

    Article  Google Scholar 

  40. Marconi, G.M., Camoriano, R., Rosasco, L., Ciliberto, C.: Structured prediction for CRiSP inverse kinematics learning with misspecified robot models. IEEE Robot. Autom. Lett. 6(3), 5650–5657 (2021). https://doi.org/10.1109/LRA.2021.3063978

    Article  Google Scholar 

  41. Xie, Z., Jin, L., Luo, X., Hu, B., Li, S.: An acceleration-level data-driven repetitive motion planning scheme for kinematic control of robots with unknown structure. IEEE Trans. Syst. Man Cybern. Syst. (2021). https://doi.org/10.1109/TSMC.2021.3129794

    Article  Google Scholar 

  42. Kraft, D.: A software package for sequential quadratic programming. Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt (1988)

  43. Paul, R.P.: Robot Manipulators: Mathematics, Programming, and Control: the Computer Control of Robot Manipulators. MIT Press (1981)

  44. Zhao, J., Zhao, Z., Yang, X., Zhao, L., Yang, G., Liu, H.: Inverse kinematics and workspace analysis of a novel SSRMS-type reconfigurable space manipulator with two lockable passive telescopic links. Mech. Mach. Theory 180, 105152 (2023). https://doi.org/10.1016/j.mechmachtheory.2022.105152

    Article  Google Scholar 

  45. Yoshikawa, T.: Manipulability of robotic mechanisms. Int. J. Rob. Res. 4(2), 3–9 (1985). https://doi.org/10.1177/027836498500400201

  46. Lynch, K.M., Park, F.C.: Modern Robotics: Mechanics, Planning, and Control. Cambridge University Press (2017)

  47. Dufour, K., Suleiman, W.: On maximizing manipulability index while solving a kinematics task. J. Intell. Robot. Syst. 100, 3–13 (2020). https://doi.org/10.1007/s10846-020-01171-7

    Article  Google Scholar 

  48. Jin, L., Li, S., La, H.M., Luo, X.: Manipulability optimization of redundant manipulators using dynamic neural networks. IEEE Trans. Ind. Electron. 64(6), 4710–4720 (2017). https://doi.org/10.1109/TIE.2017.2674624

    Article  Google Scholar 

Download references

Funding

This work has been supported by the National Natural Science Foundation of China [Project Number: 92148203], the State Key Laboratory of Robotics and System (HIT) [Project Number: SKLRS202201A01], and the Key Lab. of Science and Technology on Space Flight Dynamics [Project Number: XTB6142210210303].

Author information

Authors and Affiliations

Authors

Contributions

Zichun Xu: Conceptualization, Implementation, Analysis, and Writing. Yuntao Li, Xiaohang Yang, and Zhiyuan Zhao: Discussion, Writing, Editing, and Reviewing. Jingdong Zhao and Hong Liu: Supervision and Finalizing.

Corresponding author

Correspondence to Jingdong Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: DH Parameters for 7-, 9-, and 15-DOF Serial Chain Arms

Appendix A: DH Parameters for 7-, 9-, and 15-DOF Serial Chain Arms

Table 1 DH parameters of the KUKA arm
Table 2 DH parameters of the 9-DOF arm
Table 3 DH parameters of the 15-DOF arm

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Li, Y., Yang, X. et al. A Combined Inverse Kinematics Algorithm Using FABRIK with Optimization. J Intell Robot Syst 108, 62 (2023). https://doi.org/10.1007/s10846-023-01895-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-01895-2

Keywords

Navigation