Skip to main content
Log in

Balance and Posture Control of Legged Robots: A Survey

  • Survey Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Legged robots excel in navigating challenging natural environments, such as steep obstructions or wide gaps in the ground. In addition to rough terrain, they may confront unexpected impact forces during their leaping gaits. While facing external disturbances, legged robots should maintain and (if necessary) restore their stability while completing their gaits. To this end, external disturbances and body orientation errors should be identified, and appropriate actions have to be taken to restore the balance of the robot and to provide advantageous landing circumstances. This paper briefly surveys the developments for balance and posture control of legged robots. The primary focus of these studies is on balancing legged robots under external disturbances or performing dynamic gaits. This paper also includes a brief focus on the literature that present research on balance and posture control strategies using the angular momentum approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Chen, G., Lu, Y., Yang, X., Hu, H.: Reinforcement learning control for the swimming motions of a beaver-like, single-legged robot based on biological inspiration. Robot. Auton. Syst. 154, 104116 (2022). https://doi.org/10.1016/j.robot.2022.104116. Accessed 05 Apr 2023

  2. Chen, G., Yang, X., Xu, Y., Lu, Y., Hu, H.: Neural network-based motion modeling and control of water-actuated soft robotic fish. Smart Mater. Struct. 32(1), 015004 (2023). https://doi.org/10.1088/1361-665X/aca456. Accessed 05 Apr 2023

  3. Chen, G., Zhao, Z., Wang, Z., Tu, J., Hu, H.: Swimming modeling and performance optimization of a fish-inspired underwater vehicle (FIUV). Ocean Eng. 271, 113748 (2023). https://doi.org/10.1016/j.oceaneng.2023.113748. Accessed 05 Apr 2023

  4. Raibert, M.H., Brown, H.B.: Experiments in balance with a 2D one-legged hopping machine. J. Dyn. Syste. Meas. Control 106(1), 75–81 (1984). https://doi.org/10.1115/1.3149668. Accessed 17 Feb 2022

  5. Ahmadi, M., Buehler, M.: Stable control of a simulated one-legged running robot with hip and leg compliance. IEEE Trans. Robot. Autom. 13(1), 96–104 (1997). https://doi.org/10.1109/70.554350. Accessed 17 Feb 2022

  6. Gregorio, P., Ahmadi, M., Buehler, M.: Design, control, and energetics of an electrically actuated legged robot. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 27(4), 626–634 (1997). https://doi.org/10.1109/3477.604106. Accessed 17 Feb 2022

  7. Niiyama, R., Nagakubo, A., Kuniyoshi, Y.: Mowgli: a bipedal jumping and landing robot with an artificial musculoskeletal system. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, pp. 2546–2551 (2007). https://doi.org/10.1109/ROBOT.2007.363848. ISSN: 1050-4729. http://ieeexplore.ieee.org/document/4209466/. Accessed 17 Feb 2022

  8. Raibert, M., Blankespoor, K., Nelson, G., Playter, R.: BigDog, the rough-terrain quadruped robot. IFAC Proc. Vol. 41(2), 10822–10825 (2008). https://doi.org/10.3182/20080706-5-KR-1001.01833. Accessed 17 Feb 2022

  9. Saranli, U., Buehler, M., Koditschek, D.E.: RHex: a simple and highly mobile hexapod robot. Int. J. Robot. Res. 20(7), 616–631 (2001). https://doi.org/10.1177/02783640122067570. Accessed 17 Feb 2022

  10. Gao, Y., Wang, D., Wei, W., Yu, Q., Liu, X., Wei, Y.: Constrained predictive tracking control for unmanned hexapod robot with tripod gait. Drones 6(9), 246 (2022). https://doi.org/10.3390/drones6090246. Accessed 05 Apr 2023

  11. Clark, J.E., Cham, J.G., Bailey, S.A., Froehlich, E.M., Nahata, P.K., Full, R.J., Cutkosky, M.R.: Biomimetic design and fabrication of a hexapedal running robot. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics And Automation, vol. 4. Seoul, South Korea, pp. 3643–3649 (2001). https://doi.org/10.1109/ROBOT.2001.933183. http://ieeexplore.ieee.org/document/933183/. Accessed 17 Feb 2022

  12. Akbas, T., Eskimez, S.E., Ozel, S., Adak, O.K., Fidan, K.C., Erbatur, K.: Zero Moment Point based pace reference generation for quadruped robots via preview control. In: 2012 12th IEEE International Workshop on Advanced Motion Control (AMC), Sarajevo, Bosnia and Herzegovina, pp. 1–7 (2012). https://doi.org/10.1109/AMC.2012.6197116. http://ieeexplore.ieee.org/document/6197116/. Accessed 17 Aug 2021

  13. Asadi, F., Khorram, M., Moosavian, S.A.A.: CPG-based gait transition of a quadruped robot. In: 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), Tehran, Iran, pp. 210–215 (2015). https://doi.org/10.1109/ICRoM.2015.7367786. http://ieeexplore.ieee.org/document/7367786/. Accessed 17 Aug 2021

  14. Di Carlo, J., Wensing, P.M., Katz, B., Bledt, G., Kim, S.: Dynamic locomotion in the MIT Cheetah 3 through convex model-predictive control. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, pp. 1–9 (2018). https://doi.org/10.1109/IROS.2018.8594448. https://ieeexplore.ieee.org/document/8594448/. Accessed 17 Aug 2021

  15. Raibert, M., Chepponis, M., Brown, H.: Running on four legs as though they were one. IEEE J. Robot. Autom. 2(2), 70–82 (1986). https://doi.org/10.1109/JRA.1986.1087044. Accessed 17 Aug 2021

  16. Ugurlu, B., Havoutis, I., Semini, C., Caldwell, D.G.: Dynamic trot-walking with the hydraulic quadruped robot HyQ: Analytical trajectory generation and active compliance control. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, pp. 6044–6051 (2013). https://doi.org/10.1109/IROS.2013.6697234. http://ieeexplore.ieee.org/document/6697234/. Accessed 17 Aug 2021

  17. Agrawal, A., Jadhav, A., Pareekutty, N., Mogili, S., Shah, S.V.: Terrain adaptive posture correction in quadruped for locomotion on unstructured terrain. In: Proceedings of the Advances in Robotics on - AIR ’17, New Delhi, India, pp. 1–6 (2017). https://doi.org/10.1145/3132446.3134910. http://dl.acm.org/citation.cfm?doid=3132446.3134910. Accessed 10 Feb 2022

  18. Gay, S., Santos-Victor, J., Ijspeert, A.: Learning robot gait stability using neural networks as sensory feedback function for Central Pattern Generators. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, pp. 194–201 (2013). https://doi.org/10.1109/IROS.2013.6696353. http://ieeexplore.ieee.org/document/6696353/. Accessed 10 Feb 2022

  19. Shaoping Bai, Low, K.H., Zielinska, T.: Quadruped free gait generation combined with body trajectory planning. In: Proceedings of the First Workshop on Robot Motion and Control. RoMoCo’99, Kiekrz, Poland, pp. 165–170 (1999). https://doi.org/10.1109/ROMOCO.1999.791070. http://ieeexplore.ieee.org/document/791070/. Accessed 21 Feb 2022

  20. Chen, T., Li, Y., Rong, X., Zhou, L.: Realization of complex terrain and disturbance adaptation for hydraulic quadruped robot under flying trot gait. In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2055–2060. IEEE, Dali, China (2019). https://doi.org/10.1109/ROBIO49542.2019.8961497. https://ieeexplore.ieee.org/document/8961497/. Accessed 04 Apr 2023

  21. Khorram, M., Moosavian, S.A.A.: Balance recovery of a quadruped robot. In: 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), Tehran, Iran, pp. 259–264 (2015). https://doi.org/10.1109/ICRoM.2015.7367794. http://ieeexplore.ieee.org/document/7367794/. Accessed 17 Aug 2021

  22. Khorram, M., Moosavian, S.A.A.: Push recovery of a quadruped robot on challenging terrains. Robotica 35(8), 1670–1689 (2017). https://doi.org/10.1017/S0263574716000394. Accessed 14 Sept 2021

  23. Kertesz, C., Turunen, M.: Body state recognition for a quadruped mobile robot. In: 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES), Las Palmas de Gran Canaria, pp. 323–328 (2018). https://doi.org/10.1109/INES.2018.8523877. https://ieeexplore.ieee.org/document/8523877/. Accessed 10 Feb 2022

  24. Li, Z., Ge, Q., Ye, W., Yuan, P.: Dynamic balance optimization and control of quadruped robot systems with flexible joints. IEEE Trans. Syst. Man Cybern. Syst. 46(10), 1338–1351 (2016). https://doi.org/10.1109/TSMC.2015.2504552. Accessed 10 Feb 2022

  25. Chen, Y.-z., Hou, W.-Q., Wang, J., Wang, J.-W., Ma, H.-x.: A strategy for push recovery in quadruped robot based on reinforcement learning. In: 2015 34th Chinese Control Conference (CCC), Hangzhou, China, pp. 3145–3151 (2015). https://doi.org/10.1109/ChiCC.2015.7260125. http://ieeexplore.ieee.org/document/7260125/. Accessed 10 Feb 2022

  26. Nenchev, D.N., Nishio, A.: Ankle and hip strategies for balance recovery of a biped subjected to an impact. Robotica 26(5), 643–653 (2008). https://doi.org/10.1017/S0263574708004268. Accessed 04 Jan 2023

  27. Zhao, J., Schutz, S., Berns, K.: Biologically motivated push recovery strategies for a 3D bipedal robot walking in complex environments. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, pp. 1258–1263 (2013). https://doi.org/10.1109/ROBIO.2013.6739637. http://ieeexplore.ieee.org/document/6739637/. Accessed 14 Sep 2021

  28. Parashar, A., Parashar, A., Goyal, S., Sahjalan, B.: Push recovery for humanoid robot in dynamic environment and classifying the data using K-mean. In: Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies - ICTCS ’16, Udaipur, India, pp. 1–6 (2016). https://doi.org/10.1145/2905055.2905207. http://dl.acm.org/citation.cfm?doid=2905055.2905207. Accessed 14 Sept 2021

  29. Stephens, B.: Humanoid push recovery. In: 2007 7th IEEE-RAS International Conference on Humanoid Robots, Pittsburgh, PA, USA, pp. 589–595 (2007). https://doi.org/10.1109/ICHR.2007.4813931. http://ieeexplore.ieee.org/document/4813931/. Accessed 14 Sept 2021

  30. Akash, Chandra, S., Abha, Nandi, G.C.: Modeling a bipedal humanoid robot using inverted pendulum towards push recovery. In: 2012 International Conference on Communication, Information & Computing Technology (ICCICT), Mumbai, India, pp. 1–6 (2012). https://doi.org/10.1109/ICCICT.2012.6398102. http://ieeexplore.ieee.org/document/6398102/. Accessed 14 Sept 2021

  31. Kamioka, T., Kaneko, H., Kuroda, M., Tanaka, C., Shirokura, S., Takeda, M., Yoshiike, T.: Dynamic gait transition between walking, running and hopping for push recovery. In: 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), Birmingham, pp. 1–8 (2017). https://doi.org/10.1109/HUMANOIDS.2017.8239530. http://ieeexplore.ieee.org/document/8239530/. Accessed 14 Sept 2021

  32. Shafiee, M., Romualdi, G., Dafarra, S., Chavez, F.J.A., Pucci, D.: Online DCM trajectory generation for push recovery of torque-controlled humanoid robots. In: 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids), Toronto, ON, Canada, pp. 671–678 (2019). https://doi.org/10.1109/Humanoids43949.2019.9034996. https://ieeexplore.ieee.org/document/9034996/. Accessed 14 Sept 2021

  33. Stephens, B.J., Atkeson, C.G.: Push Recovery by stepping for humanoid robots with force controlled joints. In: 2010 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, pp. 52–59 (2010). https://doi.org/10.1109/ICHR.2010.5686288. http://ieeexplore.ieee.org/document/5686288/ Accessed 14 Sept 2021

  34. Urata, J., Nshiwaki, K., Nakanishi, Y., Okada, K., Kagami, S., Inaba, M.: Online walking pattern generation for push recovery and minimum delay to commanded change of direction and speed. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, pp. 3411–3416 (2012). https://doi.org/10.1109/IROS.2012.6385840. http://ieeexplore.ieee.org/document/6385840/. Accessed 14 Sept 2021

  35. Wu, L.-F., Li, T.-H.S.: Fuzzy dynamic gait pattern generation for real-time push recovery control of a teen-sized humanoid robot. IEEE Access 8, 36441–36453 (2020). https://doi.org/10.1109/ACCESS.2020.2975041. Accessed 14 Sept 2021

  36. Yasin, A., Huang, Q., Xu, Q., Zhang, W.: Biped robot push detection and recovery. In: 2012 IEEE International Conference on Information and Automation, Shenyang, China, pp. 993–998 (2012). https://doi.org/10.1109/ICInfA.2012.6246961. http://ieeexplore.ieee.org/document/6246961/. Accessed 14 Sept 2021

  37. Ott, C., Roa, M.A., Hirzinger, G.: Posture and balance control for biped robots based on contact force optimization. In: 2011 11th IEEE-RAS International Conference on Humanoid Robots, Bled, Slovenia, pp. 26–33 (2011). https://doi.org/10.1109/Humanoids.2011.6100882. http://ieeexplore.ieee.org/document/6100882/. Accessed 21 Feb 2022

  38. Dafarra, S., Romano, F., Nori, F.: Torque-controlled stepping-strategy push recovery: Design and implementation on the iCub humanoid robot. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, Mexico, pp. 152–157 (2016). https://doi.org/10.1109/HUMANOIDS.2016.7803271. http://ieeexplore.ieee.org/document/7803271/. Accessed 14 Sept 2021

  39. Hodgins, J.K., Raibert, M.H.: Biped gymnastics. Int. J. Robot. Res. 9(2), 115–128 (1990). https://doi.org/10.1177/027836499000900209. Accessed 21 July 2022

  40. Ghassemi, P., Masouleh, M.T., Kalhor, A.: Push recovery for NAO humanoid robot. In: 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran, pp. 035–040 (2014). https://doi.org/10.1109/ICRoM.2014.6990873. http://ieeexplore.ieee.org/document/6990873/. Accessed 14 Sept 2021

  41. Semwal, V.B., Chakraborty, P., Nandi, G.C.: Less computationally intensive fuzzy logic (type-1)-based controller for humanoid push recovery. Robot. Auton. Syst. 63, 122–135 (2015). https://doi.org/10.1016/j.robot.2014.09.001. Accessed 14 Sept 2021

  42. Kaur, S., Bawa, G.: Learning robotic skills through reinforcement learning. In: 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC), pp. 903–908. IEEE, Coimbatore, India (2022). https://doi.org/10.1109/ICESC54411.2022.9885704. https://ieeexplore.ieee.org/document/9885704/. Accessed 05 Apr 2023

  43. Ferigo, D., Camoriano, R., Viceconte, P.M., Calandriello, D., Traversaro, S., Rosasco, L., Pucci, D.: On the emergence of whole-body strategies from humanoid robot push-recovery learning. arXiv:2104.14534 [cs, stat] (2021). https://doi.org/10.1109/LRA.2021.3076955. Accessed 14 Sept 2021

  44. Luo, D., Han, X., Ding, Y., Ma, Y., Liu, Z., Wu, X.: Learning push recovery for a bipedal humanoid robot with Dynamical Movement Primitives. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul, South Korea, pp. 1013–1019 (2015). 10.1109/HUMANOIDS.2015.7363478. http://ieeexplore.ieee.org/document/7363478/ Accessed 2021-09-14

  45. Semwal, V.B., Katiyar, S.A., Chakraborty, R., Nandi, G.C.: Biologically-inspired push recovery capable bipedal locomotion modeling through hybrid automata. Robot. Auton. Syst. 70, 181–190 (2015). https://doi.org/10.1016/j.robot.2015.02.009. Accessed 14 Sept 2021

  46. Semwal, V.B., Mondal, K., Nandi, G.C.: Robust and accurate feature selection for humanoid push recovery and classification: deep learning approach. Neural Comput. Appl. 28(3), 565–574 (2017). https://doi.org/10.1007/s00521-015-2089-3. Accessed 14 Sept 2021

  47. Kim, H., Seo, D., Kim, D.: Push recovery control for humanoid robot using reinforcement learning. In: 2019 Third IEEE International Conference on Robotic Computing (IRC), Naples, Italy, pp. 488–492 (2019). https://doi.org/10.1109/IRC.2019.00102. https://ieeexplore.ieee.org/document/8675597/. Accessed 14 Sept 2021

  48. Yi, S.-J., Zhang, B.-T., Hong, D., Lee, D.D.: Online learning of a full body push recovery controller for omnidirectional walking. In: 2011 11th IEEE-RAS International Conference on Humanoid Robots, Bled, Slovenia, pp. 1–6 (2011). https://doi.org/10.1109/Humanoids.2011.6100896. http://ieeexplore.ieee.org/document/6100896/ Accessed 14 Sept 2021

  49. Yi, S.-J., Zhang, B.-T., Hong, D., Lee, D.D.: Practical bipedal walking control on uneven terrain using surface learning and push recovery. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, pp. 3963–3968 (2011). https://doi.org/10.1109/IROS.2011.6095131. http://ieeexplore.ieee.org/document/6095131/. Accessed 14 Sept 2021

  50. Yi, S.-J., Zhang, B.-T., Hong, D., Lee, D.D.: Online learning of low dimensional strategies for high-level push recovery in bipedal humanoid robots. In: 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, pp. 1649–1655 (2013). https://doi.org/10.1109/ICRA.2013.6630791. http://ieeexplore.ieee.org/document/6630791/. Accessed 14 Sept 2021

  51. Buehler, M., Battaglia, R., Cocosco, A., Hawker, G., Sarkis, J., Yamazaki, K.: SCOUT: a simple quadruped that walks, climbs, and runs. In: Proceedings. 1998 IEEE International Conference on Robotics and Automation, vol. 2. Leuven, Belgium, pp. 1707–1712 (1998). https://doi.org/10.1109/ROBOT.1998.677408. http://ieeexplore.ieee.org/document/677408/ Accessed 17 Aug 2021

  52. Chung, J.-W., Lee, I.-H., Cho, B.-K., Oh, J.-H.: Posture stabilization strategy for a trotting point-foot quadruped robot. J. Intell. Robot. Syst. 72(3–4), 325–341 (2013). https://doi.org/10.1007/s10846-012-9812-4. Accessed 17 Aug 2021

  53. Mita, T., Ikeda, T.: Proposal of a variable constraint control for SMS with application to a running and jumping quadruped. In: IEEE SMC’99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics, vol. 3. Tokyo, Japan, pp. 140–145 (1999). https://doi.org/10.1109/ICSMC.1999.823169. http://ieeexplore.ieee.org/document/823169/. Accessed 17 Aug 2021

  54. Ugurlu, B., Kotaka, K., Narikiyo, T.: Actively-compliant locomotion control on rough terrain: Cyclic jumping and trotting experiments on a stiff-by-nature quadruped. In: 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, pp. 3313–3320 (2013). https://doi.org/10.1109/ICRA.2013.6631039. http://ieeexplore.ieee.org/document/6631039/. Accessed 17 Aug 2021

  55. Wong, H.C., Orin, D.E.: Dynamic control of a quadruped standing jump. In: [1993] Proceedings IEEE International Conference on Robotics And Automation, Atlanta, GA, USA, pp. 346–351 (1993). https://doi.org/10.1109/ROBOT.1993.292198. http://ieeexplore.ieee.org/document/292198/. Accessed 17 Aug 2021

  56. Wong, H.C., Orin, D.E.: Control of a quadruped standing jump over irregular terrain obstacles. Autonomous Robots 1(2), 111–129 (1995). https://doi.org/10.1007/BF00711252. Accessed 17 Aug 2021

  57. Dini, N., Majd, V.J.: An MPC-based two-dimensional push recovery of a quadruped robot in trotting gait using its reduced virtual model. Mech. Mach. Theory 146,(2020). https://doi.org/10.1016/j.mechmachtheory.2019.103737. Accessed 14 Sept 2021

  58. Lee, Y.H., Lee, Y.H., Lee, H., Kang, H., Lee, J.H., Park, J.M., Kim, Y.B., Moon, H., Koo, J.C., Choi, H.R.: Whole-body control and angular momentum regulation using torque sensors for quadrupedal robots. J. Intell. Robot. Syst. 102(3), 66 (2021). https://doi.org/10.1007/s10846-021-01418-x. Accessed 14 Sept 2021

  59. Shang, W., Wu, Z., Liu, Q., Duan, L., Wang, C.: Foot placement estimator for quadruped push recovery. In: 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Suzhou, China, pp. 1530–1534 (2019). https://doi.org/10.1109/CYBER46603.2019.9066539. https://ieeexplore.ieee.org/document/9066539/. Accessed 14 Sept 2021

  60. Bahceci, B., Adak, O.K., Erbatur, K.: Push recovery of a quadrupedal robot in the flight phase of a long jump. International Journal of Mechanical Engineering and Robotics Research, 486–493 (2022). https://doi.org/10.18178/ijmerr.11.7.486-493. Accessed 14 Dec 2022

  61. Kojio, Y., Ishiguro, Y., Nguyen, K.-N.-K., Sugai, F., Kakiuchi, Y., Okada, K., Inaba, M.: Unified balance control for biped robots including modification of footsteps with angular momentum and falling detection based on capturability. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, pp. 497–504 (2019). https://doi.org/10.1109/IROS40897.2019.8967871. https://ieeexplore.ieee.org/document/8967871/. Accessed 17 Aug 2021

  62. Luo, R.C., Chen, C.C.: Quasi-natural humanoid robot walking trajectory generator based on five-mass with angular momentum model. IEEE Trans. Ind. Electron. 65(4), 3355–3364 (2018). https://doi.org/10.1109/TIE.2017.2750628. Accessed 17 Aug 2021

  63. Luo, R.C., Jun Sheng, Chin-Cheng Chen, Peng-Hsi Chang, Che-I Lin: Biped robot push and recovery using flywheel model based walking perturbation counteraction. In: 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids), Atlanta, GA, pp. 50–55 (2013). https://doi.org/10.1109/HUMANOIDS.2013.7029954. http://ieeexplore.ieee.org/document/7029954/. Accessed 14 Sept 2021

  64. Shamna, P., Priya, N., Ahamed, K.S.: Walking stability control of biped robot based on three mass with angular momentum model using predictive PID control. In: 2017 International Conference of Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, pp. 584–588 (2017). https://doi.org/10.1109/ICECA.2017.8212732. http://ieeexplore.ieee.org/document/8212732/. Accessed 17 Aug 2021

  65. Shafiee-Ashtiani, M., Yousefi-Koma, A., Shariat-Panahi, M., Khadiv, M.: Push recovery of a humanoid robot based on model predictive control and capture point. In: 2016 4th International Conference on Robotics and Mechatronics (ICROM), Tehran, Iran, pp. 433–438 (2016). https://doi.org/10.1109/ICRoM.2016.7886777. http://ieeexplore.ieee.org/document/7886777/. Accessed 14 Sept 2021

  66. Ugurlu, B., Kawamura, A.: Bipedal trajectory generation based on combining inertial forces and intrinsic angular momentum rate changes: Eulerian ZMP resolution. IEEE Trans. Robot. 28(6), 1406–1415 (2012). https://doi.org/10.1109/TRO.2012.2210478. Accessed 17 Aug 2021

  67. Luo, R.C., Hung, W.C., Chatila, R.: Mimicking human push-recovery strategy based on five-mass with angular momentum model. In: IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, pp. 716–721 (2016). https://doi.org/10.1109/IECON.2016.7793100. http://ieeexplore.ieee.org/document/7793100/. Accessed 14 Sept 2021

  68. Pratt, J., Carff, J., Drakunov, S., Goswami, A.: Capture point: a step toward humanoid push recovery. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots, Genova, Italy, pp. 200–207 (2006). https://doi.org/10.1109/ICHR.2006.321385. http://ieeexplore.ieee.org/document/4115602/. Accessed 14 Sept 2021

  69. Bae, H., Oh, J.-H.: Biped robot state estimation using compliant inverted pendulum model. Robot. Auton. Syst. 108, 38–50 (2018). https://doi.org/10.1016/j.robot.2018.06.004. Accessed 04 Jan 2023

  70. Rebula, J., Canas, F., Pratt, J., Goswami, A.: Learning Capture Points for humanoid push recovery. In: 2007 7th IEEE-RAS International Conference on Humanoid Robots, Pittsburgh, PA, USA, pp. 65–72 (2007). https://doi.org/10.1109/ICHR.2007.4813850. http://ieeexplore.ieee.org/document/4813850/. Accessed 14 Sept 2021

  71. Wei,Y., Gang, B., Zuwen, W.: Balance recovery for humanoid robot in the presence of unknown external push. In: 2009 International Conference on Mechatronics and Automation, Changchun, China, pp. 1928–1933 (2009). https://doi.org/10.1109/ICMA.2009.5246563. http://ieeexplore.ieee.org/document/5246563/. Accessed 14 Sept 2021

  72. Whitman, E.C., Stephens, B.J., Atkeson, C.G.: Torso rotation for push recovery using a simple change of variables. In: 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), Osaka, Japan, pp. 50–56 (2012). https://doi.org/10.1109/HUMANOIDS.2012.6651498. http://ieeexplore.ieee.org/document/6651498/. Accessed 14 Sept 2021

  73. Lee, S.-H., Goswami, A.: Reaction Mass Pendulum (RMP): An explicit model for centroidal angular momentum of humanoid robots. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, pp. 4667–4672 (2007). https://doi.org/10.1109/ROBOT.2007.364198. ISSN: 1050-4729. http://ieeexplore.ieee.org/document/4209816/. Accessed 17 Aug 2021

  74. Kasaei, S.M., Lau, N., Pereira, A., Shahri, E.: A reliable model-based walking engine with push recovery capability. In: 2017 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Coimbra, Portugal, pp. 122–127 (2017). https://doi.org/10.1109/ICARSC.2017.7964063. http://ieeexplore.ieee.org/document/7964063/. Accessed 14 Sept 2021

  75. Guan, K., Yamamoto, K., Nakamura, Y.: Push Recovery by Angular Momentum Control during 3D Bipedal Walking based on Virtual-mass-ellipsoid Inverted Pendulum Model. In: 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids), Toronto, Canada, pp. 120–125 (2019). https://doi.org/10.1109/Humanoids43949.2019.9035021. https://ieeexplore.ieee.org/document/9035021/. Accessed 14 Sept 2021

  76. Dai, H., Valenzuela, A., Tedrake, R.: Whole-body motion planning with centroidal dynamics and full kinematics. In: 2014 IEEE-RAS International Conference on Humanoid Robots, Madrid, pp. 295–302 (2014). https://doi.org/10.1109/HUMANOIDS.2014.7041375. http://ieeexplore.ieee.org/document/7041375/. Accessed 21 Feb 2022

  77. Farrell, M.T., Herr, H.: Angular momentum primitives for human turning: Control implications for biped robots. In: Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots, Daejeon, pp. 163–167 (2008). https://doi.org/10.1109/ICHR.2008.4755962. http://ieeexplore.ieee.org/document/4755962/. Accessed 17 Aug 2021

  78. Goswami, A., Kallem, V.: Rate of change of angular momentum and balance maintenance of biped robots. In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004, New Orleans, LA, USA, pp. 3785–37904 (2004). https://doi.org/10.1109/ROBOT.2004.1308858. http://ieeexplore.ieee.org/document/1308858/. Accessed 17 Aug 2021

  79. Ahn, K.-h., Oh, Y.: Walking control of a humanoid robot via explicit and stable CoM manipulation with the angular momentum resolution. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 2478–2483 (2006). https://doi.org/10.1109/IROS.2006.281692. http://ieeexplore.ieee.org/document/4058760/. Accessed 17 Aug 2021

  80. Chang, C.-H., Huang, H.-P., Hsu, H.-K., Cheng, C.-A.: Humanoid robot push-recovery strategy based on CMP criterion and angular momentum regulation. In: 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Busan, South Korea, pp. 761–766 (2015). https://doi.org/10.1109/AIM.2015.7222629. http://ieeexplore.ieee.org/document/7222629/. Accessed 17 Aug 2021

  81. Kajita, S., Yokoi, K., Saigo, M., Tanie, K.: Balancing a humanoid robot using backdrive concerned torque control and direct angular momentum feedback. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics And Automation, vol. 4. Seoul, South Korea, pp. 3376–3382 (2001). https://doi.org/10.1109/ROBOT.2001.933139. http://ieeexplore.ieee.org/document/933139/. Accessed 17 Aug 2021

  82. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Resolved momentum control: humanoid motion planning based on the linear and angular momentum. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 2. Las Vegas, NV, USA, pp. 1644–1650 (2003). https://doi.org/10.1109/IROS.2003.1248880. http://ieeexplore.ieee.org/document/1248880/. Accessed 17 Aug 2021

  83. Otani, T., Hashimoto, K., Miyamae, S., Ueta, H., Sakaguchi, M., Kawakami, Y., Lim, H.O., Takanishi, A.: Angular momentum compensation in yaw direction using upper body based on human running. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, Singapore, pp. 4768–4775 (2017). https://doi.org/10.1109/ICRA.2017.7989554. http://ieeexplore.ieee.org/document/7989554/. Accessed 17 Aug 2021

  84. Popovic, M., Englehart, A., Herr, H.: Angular momentum primitives for human walking: biomechanics and control. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 2. Sendai, Japan, pp. 1685–1691 (2004). https://doi.org/10.1109/IROS.2004.1389638. http://ieeexplore.ieee.org/document/1389638/. Accessed 17 Aug 2021

  85. Schwienbacher, M., Buschmann, T., Lohmeier, S., Favot, V., Ulbrich, H.: Self-collision avoidance and angular momentum compensation for a biped humanoid robot. In: 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, pp. 581–586 (2011). https://doi.org/10.1109/ICRA.2011.5980350. http://ieeexplore.ieee.org/document/5980350/. Accessed 17 Aug 2021

  86. Adiwahono, A.H., Chew, C.-M., Huang, W., Zheng, Y.: Push recovery controller for bipedal robot walking. In: 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, pp. 162–167 (2009). https://doi.org/10.1109/AIM.2009.5230022. http://ieeexplore.ieee.org/document/5230022/. Accessed 14 Sept 2021

  87. Adiwahono, A.H., Chee-Meng Chew, Weiwei Huang, Van Huan Dau: Humanoid robot push recovery through walking phase modification. In: 2010 IEEE Conference on Robotics, Automation and Mechatronics, Singapore, pp. 569–574 (2010). https://doi.org/10.1109/RAMECH.2010.5513130. http://ieeexplore.ieee.org/document/5513130/. Accessed 14 Sept 2021

  88. Griffin, R.J., Leonessa, A., Asbeck, A.: Disturbance compensation and step optimization for push recovery. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, South Korea, pp. 5385–5390 (2016). https://doi.org/10.1109/IROS.2016.7759792. http://ieeexplore.ieee.org/document/7759792/. Accessed 14 Sept 2021

  89. Hosseinmemar, A., Baltes, J., Anderson, J., Lau, M.C., Lun, C.F., Wang, Z.: Closed-loop push recovery for inexpensive humanoid robots. Appl. Intell. 49(11), 3801–3814 (2019). https://doi.org/10.1007/s10489-019-01446-z. Accessed 14 Sept 2021

  90. Hyon, S.-H., Osu, R., Otaka, Y.: Integration of multi-level postural balancing on humanoid robots. In: 2009 IEEE International Conference on Robotics and Automation, Kobe, pp. 1549–1556 (2009). https://doi.org/10.1109/ROBOT.2009.5152434. http://ieeexplore.ieee.org/document/5152434/. Accessed 14 Sept 2021

  91. Kojio, Y., Omori, Y., Kojima, K., Sugai, F., Kakiuchi, Y., Okada, K., Inaba, M.: Footstep modification including step time and angular momentum under disturbances on sparse footholds. IEEE Robot. Autom. Lett. 5(3), 4907–4914 (2020). https://doi.org/10.1109/LRA.2020.3004796. Accessed 14 Sept 2021

  92. Lack, J.: Integrating the effects of angular momentum and changing center of mass height in bipedal locomotion planning. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul, South Korea, pp. 651–656 (2015). https://doi.org/10.1109/HUMANOIDS.2015.7363440. http://ieeexplore.ieee.org/document/7363440/. Accessed 14 Sept 2021

  93. Lee, S.-H., Goswami, A.: A momentum-based balance controller for humanoid robots on non-level and non-stationary ground. Auton. Robots 33(4), 399–414 (2012). https://doi.org/10.1007/s10514-012-9294-z. Accessed 14 Sept 2021

  94. Luo, R.C., Huang, C.-W.: A push-recovery method for walking biped robot based on 3-D flywheel model. In: IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, pp. 002685–002690 (2015). https://doi.org/10.1109/IECON.2015.7392507. http://ieeexplore.ieee.org/document/7392507/. Accessed 14 Sept 2021

  95. Schuller, R., Mesesan, G., Englsberger, J., Lee, J., Ott, C.: Online centroidal angular momentum reference generation and motion optimization for humanoid push recovery. IEEE Robot. Autom. Lett. 6(3), 5689–5696 (2021). https://doi.org/10.1109/LRA.2021.3082023

    Article  Google Scholar 

  96. Seung-kook Yun, Goswami, A.: Momentum-based reactive stepping controller on level and non-level ground for humanoid robot push recovery. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, pp. 3943–3950 (2011). https://doi.org/10.1109/IROS.2011.6094491. http://ieeexplore.ieee.org/document/6094491/. Accessed 14 Sept 2021

  97. Machairas, K., Papadopoulos, E.: On quadruped attitude dynamics and control using reaction wheels and tails. In: 2015 European Control Conference (ECC), Linz, Austria, pp. 753–758 (2015). https://doi.org/10.1109/ECC.2015.7330633. http://ieeexplore.ieee.org/document/7330633/. Accessed 21 Feb 2022

  98. Li, X., Jiang, Z., Li, H., Mo, Y., Zou, M., Huang, Q.: Dynamic stability control for a bio-robot with primates-inspired active tail. In: 2015 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, pp. 2035–2040 (2015). https://doi.org/10.1109/ICMA.2015.7237799. https://ieeexplore.ieee.org/document/7237799/. Accessed 21 Feb 2022

  99. Chen, J., Yongjian, X., Ming, C., Xiaodong, Z.: Post-capture angular momentum management of space robot with controllable damping joints. In: 2019 IEEE 2nd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), Shenyang, China, pp. 638–642 (2019). https://doi.org/10.1109/AUTEEE48671.2019.9033432. https://ieeexplore.ieee.org/document/9033432/. Accessed 17 Aug 2021

  100. Nohmi, M., Nenchev, D.N., Uchiyama, M.: Momentum control of a tethered space robot through tether tension control. In: Proceedings. 1998 IEEE International Conference on Robotics and Automation, vol. 1. Leuven, Belgium, pp. 920–925 (1998). https://doi.org/10.1109/ROBOT.1998.677105. http://ieeexplore.ieee.org/document/677105/. Accessed 17 Aug 2021

  101. Tang, X., Li Chen: Nonholonomic motion planning of space robot system with dual-arms using genetic algorithm. In: 2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain, pp. 2156–2160 (2007). https://doi.org/10.1109/ISIE.2007.4374942. http://ieeexplore.ieee.org/document/4374942/. Accessed 17 Aug 2021

  102. Ikeda, T., Taek-Kun Nam, Mita, T., Anderson, B.D.O.: Variable constraint control of underactuated free flying robots-mechanical design and convergence. In: Proceedings of the 38th IEEE Conference on Decision and Control, vol. 3. Phoenix, AZ, USA, pp. 2539–2544 (1999). https://doi.org/10.1109/CDC.1999.831310. http://ieeexplore.ieee.org/document/831310/. Accessed 17 Aug 2021

  103. Gupta, N., Kothari, M., Abhishek: Flight dynamics and nonlinear control design for variable-pitch quadrotors. In: 2016 American Control Conference (ACC), Boston, MA, USA, pp. 3150–3155 (2016). https://doi.org/10.1109/ACC.2016.7525402. http://ieeexplore.ieee.org/document/7525402/. Accessed 17 Aug 2021

  104. Mita, T., Taek-Kun Nam, Sang-Ho Hyon: Analytical time optimal control solution for a 2-link free flying acrobots. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics And Automation, vol. 3. Seoul, South Korea, pp. 2741–2746 (2001). https://doi.org/10.1109/ROBOT.2001.933037. http://ieeexplore.ieee.org/document/933037/. Accessed 17 Aug 2021

  105. Morita, Y., Ohnishi, K.: Attitude control of hopping robot using angular momentum. In: IEEE International Conference on Industrial Technology, 2003, Maribor, Slovenia, pp. 173–178 (2003). https://doi.org/10.1109/ICIT.2003.1290263. http://ieeexplore.ieee.org/document/1290263/. Accessed 17 Aug 2021

  106. Powell, M.J., Ames, A.D.: Mechanics-based control of underactuated 3D robotic walking: Dynamic gait generation under torque constraints. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, South Korea, pp. 555–560 (2016). https://doi.org/10.1109/IROS.2016.7759108. http://ieeexplore.ieee.org/document/7759108/. Accessed 17 Aug 2021

  107. Carpentier, J., Tonneau, S., Naveau, M., Stasse, O., Mansard, N.: A versatile and efficient pattern generator for generalized legged locomotion. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, pp. 3555–3561 (2016). https://doi.org/10.1109/ICRA.2016.7487538. https://ieeexplore.ieee.org/document/7487538/. Accessed 17 Aug 2021

Download references

Funding

This study is supported financially by Sabanci University with a tuition waiver of Beste Bahçeci.

Author information

Authors and Affiliations

Authors

Contributions

Beste Bahçeci and Kemalettin Erbatur wrote the paper. All authors shared ideas and discussed results, and all authors had approved the final version.

Corresponding author

Correspondence to Beste Bahçeci.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahçeci, B., Erbatur, K. Balance and Posture Control of Legged Robots: A Survey. J Intell Robot Syst 108, 27 (2023). https://doi.org/10.1007/s10846-023-01882-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-01882-7

Keywords

Navigation