Skip to main content
Log in

Designs of the Biomimetic Robotic Fishes Performing Body and/or Caudal Fin (BCF) Swimming Locomotion: A Review

  • Review Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The excellent swimming performances of live fish motivate scientists and engineers around the world to study its swimming mechanism and develop fish-like underwater robots, namely, the biomimetic robotic fishes. This paper compares different designs of biomimetic robotic fishes performing Body and/or Caudal Fin (BCF) swimming locomotion, and stresses how the designs evolve. The general trend is to utilize a simpler and more robust mechanism to make biomimetic robotic fishes mimic their counterparts in nature better, at the same time, to exhibit better swimming performances. Representative studies are given and discussed. Challenges of current studies are summarized and future research directions are presented. With state-of-the-art engineering and biological technologies, the biomimetic robotic fishes have great potentials in some areas where the conventional screw propellers are not applicable, like narrow space navigation and eco-friendly environment monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Triantafyllou, M.S., Triantafyllou, G.S.: An efficient swimming machine. Sci. Am. 272(3), 64–70 (1995)

    Article  Google Scholar 

  2. Videler, J.J.: Fish swimming. Chapman and Hall, London (1993)

    Book  Google Scholar 

  3. Sfakiotakis, M., Lane, D.M., Davies, J.B.C.: Review of fish swimming modes for aquatic locomotion. IEEE J. Ocean. Eng. 24(2), 237–252 (1999)

    Article  Google Scholar 

  4. Lindsey, C.C.: Form, function, and locomotory habits in fish. In: Fish Physiology, pp 1–100. Academic Press, New York (1978)

  5. Gillis, G.B.: Undulatory locomotion in elongate aquatic vertebrates: anguilliform swimming since sir james gray. Am. Zool. 36(6), 656–665 (1996)

    Article  Google Scholar 

  6. Long, JrJ.H., Shepherd, W., Root, R.G.: Manueuverability and reversible propulsion: How eel-like fish swim forward and backward using travelling body waves. In: Proceeding of International Symposium on Unmanned Untethered Submersible Technology, pp. 118–134. Citeseer, New Hampshire (1997)

  7. Colgate, J.E., Lynch, K.M.: Mechanics and control of swimming: A review. IEEE J. Ocean. Eng. 29(3), 660–673 (2004)

    Article  Google Scholar 

  8. Lighthill, M.J.: Mathematical biofluiddynamics. SIAM, Philadelphia (1975)

    Book  MATH  Google Scholar 

  9. Barrett, D., Grosenbaugh, M., Triantafyllou, M.: Optimal control of a flexible hull robotic undersea vehicle propelled by an oscillating foil. In: Proceeding of IEEE Symposium on Autonomous Underwater Vehicle Technology, pp. 1–9. IEEE, Monterey (1996)

  10. Anderson, J.M., Streitlien, K., Barrett, D.S., Triantafyllou, M.S.: Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 41–72 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Quinn, D.B., Lauder, G. V., Smits, A.J.: Maximizing the efficiency of a flexible propulsor using experimental optimization. J. Fluid Mech. 767, 430–448 (2015)

    Article  Google Scholar 

  12. Lauder, G.V., Lim, J., Shelton, R., Witt, C., Anderson, E., Tangorra, J.L.: Robotic models for studying undulatory locomotion in fishes. Mar. Technol. Soc. J. 45(4), 41–55 (2011)

    Article  Google Scholar 

  13. Kaya, M., Tuncer, I.H.: Nonsinusoidal path optimization of a flapping airfoil. AIAA J. 45 (8), 2075–2082 (2007)

    Article  Google Scholar 

  14. Lu, K., Xie, Y.H., Zhang, D.: Numerical study of large amplitude, nonsinusoidal motion and camber effects on pitching airfoil propulsion. J. Fluids Struct. 36, 184–194 (2013)

    Article  Google Scholar 

  15. Hover, F.S., Haugsdal, Ø., Triantafyllou, M.S. : Effect of angle of attack profiles in flapping foil propulsion. J. Fluids Struct. 19(1), 37–47 (2004)

    Article  Google Scholar 

  16. Ming, T., Jin, B., Song, J., Luo, H., Du, R., Ding, Y.: 3D computational models explain muscle activation patterns and energetic functions of internal structures in fish swimming. PLoS Comput. Biol. 15(9), e1006883 (2019)

    Article  Google Scholar 

  17. Heathcote, S., Wang, Z., Gursul, I.: Effect of spanwise flexibility on flapping wing propulsion. J. Fluids Struct. 24(2), 183–199 (2008)

    Article  Google Scholar 

  18. Xie, F., Li, Z., Ding, Y., Zhong, Y., Du, R.: An experimental study on the fish body flapping patterns by using a biomimetic robot fish. IEEE Robot. Autom. Lett. 5(1), 64–71 (2020)

    Article  Google Scholar 

  19. Roper, D. T., Sharma, S., Sutton, R., Culverhouse, P.: A review of developments towards biologically inspired propulsion systems for autonomous underwater vehicles. Proc. Inst. Mech. Eng. M J. Eng. Mar. Environ. 225(2), 77–96 (2011)

    Google Scholar 

  20. Yu, J., Wang, M., Dong, H., Zhang, Y., Wu, Z.: Motion control and motion coordination of bionic robotic fish: a review. J. Bionic Eng. 15(4), 579–598 (2018)

    Article  Google Scholar 

  21. Raj, A., Thakur, A.: Fish-inspired robots: design, sensing, actuation, and autonomy - a review of research. Bioinspir. Biomim., vol. 11, no. 3(03), 2016 (1001)

    Google Scholar 

  22. Du, R., Li, Z., Youcef-Toumi, K., Alvarado, P.V.Y.: Robot fish: Bio-inspired fishlike underwater robots. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  23. Duraisamy, P., Kumar Sidharthan, R., Nagarajan Santhanakrishnan, M.: Design, modeling, and control of biomimetic fish robot: A review. J. Bionic Eng. 16(6), 967–993 (2019)

    Article  Google Scholar 

  24. Anderson, J. M., Chhabra, N. K.: Maneuvering and stability performance of a robotic tuna. Integr. Comp. Biol. 42(1), 118–126 (2002)

    Article  Google Scholar 

  25. Anderson, J., Kerrebrock, P.: The Vorticity Control Unmanned Undersea Vehicle (VCUUV) - An autonomous vehicle employing fish swimming propulsion and maneuvering. In: Proceeding of International Symposium on Unmanned Untethered Submersible Technology. New Hampshire, pp. 189–195. Autonomous Undersea Systems Institute, USA (1997)

  26. Kumph, J.M.: Maneuvering of a robotic pike. MSc dissertation, Massachusetts Institute of Technology (2000)

  27. Harper, K.A., Berkemeier, M.D., Grace, S.: Modeling the dynamics of spring-driven oscillating-foil propulsion. IEEE J. Ocean. Eng. 23(3), 285–296 (1998)

    Article  Google Scholar 

  28. [Online]. Available: https://en.wikipedia.org/wiki/RoboTuna

  29. [Online]. Available: https://bugbot.wordpress.com/2008/10/21/robopike/

  30. Hu, H.: Biologically inspired design of autonomous robotic fish at Essex. In: Proceeding of IEEE SMC UK-RI Chapter Conference,on Advances in Cybernetic Systems, pp. 3–8. IEEE, Sheffield (2006)

  31. Clapham, R.J., Hu, H.: iSplash: realizing fast carangiform swimming to outperform a real fish. In: Robot fish: bio-inspired fishlike underwater robots. vol. 12, pp. 193–218. Springer, Berlin (2015)

  32. Liu, J., Hu, H.: Biological inspiration: from carangiform fish to multi-joint robotic fish. J. Bionic Eng. 7(1), 35–48 (2010)

    Article  Google Scholar 

  33. Yu, J., Ding, R., Yang, Q., Tan, M., Zhang, J.: Amphibious pattern design of a robotic fish with wheel-propeller-fin mechanisms. J. Field Robot. 30(5), 702–716 (2013)

    Article  Google Scholar 

  34. Yu, J., Su, Z., Wang, M., Tan, M., Zhang, J.: Control of yaw and pitch maneuvers of a multilink dolphin robot. IEEE Trans. Robot. 28(2), 318–329 (2012)

    Article  Google Scholar 

  35. Yu, J., Wu, Z., Wang, M., Tan, M.: CPG network optimization for a biomimetic robotic fish via PSO. IEEE Trans. Neural Netw. Learn. Syst. 27(9), 1962–1968 (2016)

    Article  MathSciNet  Google Scholar 

  36. Wu, Z., Yu, J., Tan, M.: CPG parameter search for a biomimetic robotic fish based on particle swarm optimization. In: Proceeding of IEEE International Conference on Robotics and Biomimetics, pp. 563–568. IEEE, Guangzhou (2012)

  37. Yu, J., Tan, M., Wang, S., Chen, E.: Development of a biomimetic robotic fish and its control algorithm. IEEE Trans. Syst. Man Cybern. B Cybern. 34(4), 1798–1810 (2004)

    Article  Google Scholar 

  38. Yu, J., Su, Z., Wu, Z., Tan, M.: Development of a fast-swimming dolphin robot capable of leaping. IEEE/ASME Trans. Mechatron. 21(5), 2307–2316 (2016)

    Article  Google Scholar 

  39. Zhao, W., Yu, J., Fang, Y., Wang, L.: Development of multi-mode biomimetic robotic fish based on central pattern generator. In: Proceeding of IEEE International Conference on Intelligent Robots and Systems, pp. 3891–3896. IEEE, Beijing (2006)

  40. Yu, J., Wang, M., Su, Z., Tan, M., Zhang, J.: Dynamic modeling and its application for a CPG-coupled robotic fish. In: Proceeding of IEEE International Conference on Robotics and Automation, pp. 159–164. IEEE, Shanghai (2011)

  41. Ding, R., Yu, J., Yang, Q., Tan, M.: Dynamic modelling of a CPG-controlled amphibious biomimetic swimming robot. Int. J. Adv. Robot. Syst. 10(4), 199 (2013)

    Article  Google Scholar 

  42. Yu, J., Chen, S., Wu, Z., Chen, X., Wang, M.: Energy analysis of a CPG-controlled miniature robotic fish. J. Bionic Eng. 15(2), 260–269 (2018)

    Article  Google Scholar 

  43. Su, Z., Yu, J., Tan, M., Zhang, J.: Implementing flexible and fast turning maneuvers of a multijoint robotic fish. IEEE/ASME Trans. Mechatron. 19(1), 329–338 (2014)

    Article  Google Scholar 

  44. Wu, Z., Yu, J., Tan, M., Zhang, J.: Kinematic comparison of forward and backward swimming and maneuvering in a self-propelled sub-carangiform robotic fish. J. Bionic Eng. 11(2), 199–212 (2014)

    Article  Google Scholar 

  45. Yu, J., Wu, Z., Su, Z., Wang, T., Qi, S.: Motion control strategies for a repetitive leaping robotic dolphin. IEEE/ASME Trans. Mechatron. 24(3), 913–923 (2019)

    Article  Google Scholar 

  46. Wang, M., Yu, J. Z., Tan, M., Zhang, J. W.: Multimodal swimming control of a robotic fish with pectoral fins using a CPG network. Chin. Sci. Bull. 57(10), 1209–1216 (2012)

    Article  Google Scholar 

  47. Yu, J., Ding, R., Yang, Q., Tan, M., Wang, W., Zhang, J.: On a bio-inspired amphibious robot capable of multimodal motion. IEEE/ASME Trans. Mechatron. 17(5), 847–856 (2012)

    Article  Google Scholar 

  48. Yu, J., Chen, S., Wu, Z., Wang, W.: On a miniature free-swimming robotic fish with multiple sensors. Int. J. Adv. Robot. Syst. 13(2), 62 (2016)

    Article  Google Scholar 

  49. Zhang, C., Yu, J., Tan, M.: Swimming performance of a robotic fish in both straight swimming and making a turn. In: Proceeding of 2015 IEEE International Conference on Mechatronics and Automation, ICMA 2015, pp. 1111–1115. IEEE, Beijing (2015)

  50. Wu, Z., Yu, J., Yuan, J., Tan, M.: Towards a gliding robotic dolphin: design, modeling, and experiments. IEEE/ASME Trans. Mechatron. 24(1), 260–270 (2019)

    Article  Google Scholar 

  51. Yu, J., Wang, T., Wu, Z., Tan, M.: Design of a miniature underwater angle-of-attack sensor and its application to a self-propelled robotic fish. IEEE J. Ocean. Eng. (Early Access) (2019)

  52. Wu, Z., Yu, J., Yuan, J., Tan, M., Qi, S.: Gliding motion regulation of a robotic dolphin based on a controllable fluke. IEEE Trans. Ind. Electron. 67(4), 2945–2953 (2020)

    Article  Google Scholar 

  53. Dong, H., Wu, Z., Chen, D., Tan, M., Yu, J.: Development of a whale shark-inspired gliding robotic fish with high maneuverability. IEEE/ASME Trans. Mechatron. Early Access (2020)

  54. Wang, R., Wang, S., Wang, Y., Cai, M., Tan, M.: Vision-Based autonomous hovering for the biomimetic underwater robot—RobCutt-II. IEEE Trans. Ind. Electron. 66(11), 8578–8588 (2019)

    Article  Google Scholar 

  55. Triantafyllou, M.S., Triantafyllou, G.S., Gopalkrishnan, R.: Wake mechanics for thrust generation in oscillating foils. Phys. Fluids A 3(12), 2835–2837 (1991)

    Article  Google Scholar 

  56. Triantafyllou, M.S., Triantafyllou, G. S., Yue, D. K.P.: Hydrodynamics of Fishlike Swimming. Annu. Rev. Fluid Mech. 32(1), 33–53 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhang, S., Qian, Y., Liao, P., Qin, F., Yang, J.: Design and control of an agile robotic fish with integrative biomimetic mechanisms. IEEE/ASME Trans. Mechatron. 21(4), 1846–1857 (2016)

    Article  Google Scholar 

  58. Zhang, J., Sheng, J., O’Neill, C.T., Walsh, C.J., Wood, R. J., Ryu, J.H., Desai, J.P., Yip, M.C.: Robotic artificial muscles: current progress and future perspectives. IEEE Trans. Robot. 35 (3), 761–781 (2019)

    Article  Google Scholar 

  59. Salazar, R., Campos, A., Fuentes, V., Abdelkefi, A.: A review on the modeling, materials, and actuators of aquatic unmanned vehicles. Ocean Eng. 172, 257–285 (2019)

    Article  Google Scholar 

  60. Wang, Z., Hang, G., Wang, Y., Li, J., Du, W.: Embedded SMA wire actuated biomimetic fin: A module for biomimetic underwater propulsion. Smart Mater. Struct. 17, 025039 (2008)

    Article  Google Scholar 

  61. Suleman, A., Crawford, C.: Design and testing of a biomimetic tuna using shape memory alloy induced propulsion. Comput. Struct. 86, 491–499 (2008)

    Article  Google Scholar 

  62. Zhang, S., Liu, B., Wang, L., Yan, Q., Low, K.H., Yang, J.: Design and implementation of a lightweight bioinspired pectoral fin driven by SMA. IEEE/ASME Trans. Mechatron. 19(6), 1773–1785 (2014)

    Article  Google Scholar 

  63. Chen, Z., Shatara, S., Tan, X.: Modeling of biomimetic robotic fish propelled by an ionic polymermetal composite caudal fin. IEEE/ASME Trans. Mechatron. 15(3), 448–459 (2010)

    Article  Google Scholar 

  64. Guo, S., Fukuda, T., Asaka, K.: A new type of fish-like underwater microrobot. IEEE/ASME Trans. Mechatron. 8(1), 136–141 (2003)

    Article  Google Scholar 

  65. Kim, B., Kim, D.H., Jung, J., Park, J. O.: A biomimetic undulatory tadpole robot using ionic polymer-metal composite actuators. Smart Mater. Struct. 14(6), 1579–1585 (2005)

    Article  Google Scholar 

  66. Deng, X., Avadhanula, S.: Biomimetic micro underwater vehicle with oscillating fin propulsion: System design and force measurement. In: Proceeding of IEEE International Conference on Robotics and Automation, pp. 3312–3317. IEEE, Barcelona (2005)

  67. Cen, L., Erturk, A.: Bio-inspired aquatic robotics by untethered piezohydroelastic actuation. Bioinspir. Biomim. 8(1), 16006 (2013)

    Article  Google Scholar 

  68. Lighthill, M.J.: Note on the swimming of slender fish. J. Fluid Mech. 9(2), 305–317 (1960)

    Article  MathSciNet  Google Scholar 

  69. Alvarado, P. V. y.: Design of biomimetic compliant devices for locomotion in liquid environments. Ph.D dissertation Massachusetts Institute of Technology (2007)

  70. Alvarado, P.V.y., Youcef-Toumi, K.: Design of machines with compliant bodies for biomimetic locomotion in liquid environments. J. Dyn. Syst. Meas. Control 128(1), 3–13 (2006)

    Article  Google Scholar 

  71. Epps, B.P., Alvarado, P.V.y., Youcef-Toumi, K., Techet, A.H.: Swimming performance of a biomimetic compliant fish-like robot. Exp. Fluids 47(6), 927–939 (2009)

    Article  Google Scholar 

  72. El Daou, H., Salumȧe, T., Ristolainen, A., Toming, G., Listak, M., Kruusmaa, M.: A bio-mimetic design of a fish-like robot with compliant tail. In: Proceeding of International Workshop on Bio-inspired robots, pp. 15–17 (2011)

  73. El Daou, H., Salumȧe, T., Ristolainen, A., Toming, G., Listak, M., Kruusmaa, M.: A bio-mimetic design and control of a fish-like robot using compliant structures. In: Proceeding of IEEE International Conference on Advanced Robotics, pp. 563–568. IEEE, Tallinn (2011)

  74. Marchese, A.D., Onal, C.D., Rus, D.: Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot. 1(1), 75–87 (2014)

    Article  Google Scholar 

  75. Katzschmann, R.K., DelPreto, J., MacCurdy, R., Rus, D.: Exploration of underwater life with an acoustically controlled soft robotic fish, vol. 3, p eaar3449 (2018)

  76. Li, Z., Du, R., Lei, M. C., Yuan, S. M.: Design and analysis of a biomimetic wire-driven robot arm. In: Proceeding of ASME International Mechanical Engineering Congress and Exposition, vol. 7, 191–198. ASME (2011)

  77. Li, Z., Du, R.: Design and analysis of a bio-inspired wire-driven multi-section flexible robot. Int. J. Adv. Robot. Syst. 10(4), 209 (2013)

    Article  Google Scholar 

  78. Li, Z, Zhong, Y., Du, R.: A novel underactuated wire-driven robot fish with vector propulsion. In: Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 941–946. IEEE, Tokyo (2013)

  79. Li, Z., Du, R.: Design and analysis of a biomimetic wire-driven flapping propeller. In: Proceeding of IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 276–281. IEEE, Rome (2012)

  80. Li, Z., Gao, W., Du, R., Liao, B.: Design and analysis of a wire-driven robot tadpole. In: Proceeding of ASME International Mechanical Engineering Congress and Exposition, pp. 297–303. ASME, Houston (2012)

  81. Liao, B., Li, Z., Du, R.: Robot fish with a novel biomimetic wire-driven flapping propulsor. Adv. Robot. 28(5), 339–349 (2014)

    Article  Google Scholar 

  82. Li, Z., Du, R., Zhang, Y., Li, H.: Robot fish with novel wire-driven continuum flapping propulsor. Appl. Mech. Mater. 300-301, 510–514 (2013)

    Article  Google Scholar 

  83. Liao, B., Li, Z., Du, R.: Robot tadpole with a novel biomimetic wire-driven propulsor. In: Proceeding of IEEE International Conference on Robotics and Biomimetics, pp. 557–562. Guangzhou, IEEE (2012)

  84. Zhong, Y., Li, Z., Du, R.: A novel robot fish with wire-driven active body and compliant tail. IEEE/ASME Trans. Mechatron. 22(4), 1633–1643 (2017)

    Article  Google Scholar 

  85. Xie, F., Zhong, Y., Du, R., Li, Z.: Central Pattern Generator (CPG) control of a biomimetic robot fish for multimodal swimming. J. Bionic Eng. 16(2), 222–234 (2019)

    Article  Google Scholar 

  86. Taylor, G.I.: Analysis of the swimming of long and narrow animals. Philos. Trans. Roy. Soc. London Ser. A Math. Phys. Sci. 214(1117), 158–183 (1952)

    MATH  Google Scholar 

  87. Lighthill, M.J.: Hydromechanics of aquatic animal propulsion. Annu. Rev. Fluid Mech. 1(1), 413–446 (1969)

    Article  Google Scholar 

  88. Lighthill, M.J.: Large-amplitude elongated-body theory of fish locomotion. Proc. Roy. Soc. Lond. Ser. B. Biol. Sci. 179(1055), 125–138 (1971)

    Google Scholar 

  89. Aureli, M., Kopman, V., Porfiri, M.: Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME Trans. Mechatron. 15(4), 603–614 (2010)

    Article  Google Scholar 

  90. Mason, R., Burdick, J.: Construction and modelling of a carangiform robotic fish. In: Experimental Robotics VI, pp. 235–242. Springer, Sydney (2008)

  91. Mason, R., Burdick, J.W.: Experiments in carangiform robotic fish locomotion. In: Proceeding of IEEE International Conference on Robotics and Automation, pp. 428–435. IEEE, San Francisco (2000)

  92. Wang, W., Dai, X., Li, L., Gheneti, B.H., Ding, Y., Yu, J., Xie, G.: Three-dimensional modeling of a fin-actuated robotic fish with multimodal swimming. IEEE/ASME Trans. Mechatron. 23(4), 1641–1652 (2018)

    Article  Google Scholar 

  93. Crespi, A., Lachat, D., Pasquier, A., Ijspeert, A. J.: Controlling swimming and crawling in a fish robot using a central pattern generator. Auton. Robot. 25(1-2), 3–13 (2008)

    Article  Google Scholar 

  94. Yu, J., Wang, K., Tan, M., Zhang, J.: Design and control of an embedded vision guided robotic fish with multiple control surfaces. Sci. World J. 2014, 6312 (2014)

    Google Scholar 

  95. Webb, D.C., Simonetti, P. J., Jones, C.P.: SLOCUM: An underwater glider propelled by environmental energy. IEEE J. Ocean. Eng. 26(4), 447–452 (2001)

    Article  Google Scholar 

  96. Eriksen, C.C., Osse, T.J., Light, R.D., Wen, T., Lehman, T.W., Sabin, P. L., Ballard, J.W., Chiodi, A.M.: Seaglider: A long-range autonomous underwater vehicle for oceanographic research. IEEE J. Ocean. Eng. 26(4), 424–436 (2001)

    Article  Google Scholar 

  97. Wang, J., Wu, Z., Yang, Y., Tan, M., Yu, J.: Spiraling motion of a gliding robotic dolphin based on the 3-D dynamic model. In: Proceeding of 2018 IEEE International Conference on Real-Time Computing and Robotics, RCAR. Kandima, pp. 13–18. IEEE,Maldives (2019)

  98. Liu, J., Hu, H.: Mimicry of sharp turning behaviours in a robotic fish. In: Proceeding of IEEE International Conference on Robotics and Automation, pp. 3318–3323. IEEE, Barcelona (2005)

  99. Marder, E., Bucher, D.: Central pattern generators and the control of rhythmic movements. Curr. Biol. 11(23), 986–996 (2001)

    Article  Google Scholar 

  100. Westphal, A., Rulkov, N.F., Ayers, J., Brady, D., Hunt, M.: Controlling a lamprey-based robot with an electronic nervous system. Smart Struct. Syst. 8(1), 39–52 (2011)

    Article  Google Scholar 

  101. Spierts, I.L., Van Leeuwen, J.L.: Kinematics and muscle dynamics of C- and S-starts of carp (Cyprinus carpio L.) J. Exper. Biol. 202(4), 393–406 (1999)

    Article  Google Scholar 

  102. Yang, G.-h., Ryuh, Y.: Design of high speed fish-like robot’ICHTHUS V5.7’. In: Proceeding of 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). pp. 451–453. IEEE, Jeju (2013)

  103. Clapham, R.J., Hu, H.: ISplash-I: High performance swimming motion of a carangiform robotic fish with full-body coordination. In: Proceeding of IEEE International Conference on Robotics and Automation. pp. 322–327. IEEE, Hong Kong (2014)

  104. Ming, A., Park, S., Yoshinori, N., Shimojo, M.: Development of underwater robots using piezoelectric fiber composite. In: Proceeding of IEEE International Conference on Robotics and Automation, pp. 3821–3826. IEEE, Kobe (2009)

  105. Xie, F., Du, R.: Central pattern generator control for a biomimetic robot fish in maneuvering. In: Proceeding of IEEE International Conference on Robotics and Biomimetics, pp. 268–273. IEEE, Kuala Lumpur (2018)

  106. Xie, F., Zhong, Y., Kwok, M.F., Du, R.: Central pattern generator based control of a wire-driven robot fish. In: Proceeding of IEEE International Conference on Information and Automation, pp. 475–480. IEEE, Wuyishan (2018)

  107. Wen, L., Liang, J., Wu, G., Li, J.: Hydrodynamic experimental investigation on efficient swimming of robotic fish using self-propelled method. Int. J. Offshore Polar Eng. 20(3), 167–174 (2010)

    Google Scholar 

  108. Wen, L., Wang, T., Wu, G., Liang, J.: Quantitative thrust efficiency of a self-propulsive robotic fish: Experimental method and hydrodynamic investigation. IEEE/ASME Trans. Mechatron. 18(3), 1027–1038 (2013)

    Article  Google Scholar 

  109. Ay, M., Korkmaz, D., Koca, G.O., Bal, C., Akpolat, Z. H., Bingol, M.C.: Mechatronic design and manufacturing of the intelligent robotic fish for bio-inspired swimming modes. Electronics 7(7), 118 (2018)

    Article  Google Scholar 

  110. Hole, W., Hole, W.: Drag reduction in fish-like locomotion. J. Fluid Mech. 392, 183–212 (1999)

    Article  MathSciNet  Google Scholar 

  111. Wang, Z., Hang, G., Li, J., Wang, Y., Xiao, K.: A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin. Sens. Actuators A 144(2), 354–360 (2008)

    Article  Google Scholar 

  112. Chen, B., Jiang, H.: Swimming performance of a tensegrity robotic fish. Soft Robot. 6(4), 520–531 (2019)

    Article  MathSciNet  Google Scholar 

  113. Rossi, C., Colorado, J., Coral, W., Barrientos, A.: Bending continuous structures with SMAs: A novel robotic fish design. Bioinspir. Biomim. 6, 045005 (2011)

    Article  Google Scholar 

  114. Chen, Z., Shatara, S., Tan, X.: Modeling of biomimetic robotic fish propelled by an ionic polymermetal composite caudal fin. IEEE/ASME Trans. Mechatron. 15(3), 448–459 (2010)

    Article  Google Scholar 

  115. Hu, Y., Zhang, S., Liang, J., Wang, T.: Development and CPG-based control of a biomimetic robotic fish with advanced underwater mobility. In: Proceeding of IEEE International Conference on Robotics and Automation, pp. 813–818. IEEE, Hong Kong (2014)

  116. Li, Z., Ge, L., Xu, W., Du, Y.: Turning characteristics of biomimetic robotic fish driven by two degrees of freedom of pectoral fins and flexible body/caudal fin. Int. J. Adv. Robot. Syst. 15(1), 1–12 (2018)

    Article  Google Scholar 

  117. Zuo, W., Keow, A., Chen, Z.: Three-dimensionally maneuverable robotic fish enabled by servo motor and water electrolyser. In: Proceeding of IEEE International Conference on Robotics and Automation, pp. 4667–4673. IEEE, Montreal (2019)

  118. Clapham, R.J., Hu, H.: iSplash-MICRO: A 50mm robotic fish generating the maximum velocity of real fish. In: Proceeding of IEEE International Conference on Intelligent Robots and Systems, pp. 287–293. IEEE, Chicago (2014)

  119. Liu, Y., Chen, W., Liu, J.: Research on the swing of the body of two-joint robot fish. J. Bionic Eng. 5(2), 159–165 (2008)

    Article  Google Scholar 

  120. Lou, B., Ni, Y., Mao, M., Wang, P., Cong, Y.: Optimization of the kinematic model for biomimetic robotic fish with rigid headshaking mitigation. Robotics 6(4), 30 (2017)

    Article  Google Scholar 

  121. Liu, J., Hu, H.: A methodology of modelling fish-like swim patterns for robotic fish. In: Proceeding of the 2007 IEEE International Conference on Mechatronics and Automation, pp. 1316–1321. IEEE, Harbin (2007)

  122. Verma, S., Xu, J.X.: Data-assisted modeling and speed control of a robotic fish. IEEE Trans. Ind. Electron. 64(5), 4150–4157 (2017)

    Article  Google Scholar 

  123. Yu, J., Yuan, J., Wu, Z., Tan, M.: Data-driven dynamic modeling for a swimming robotic fish. IEEE Trans. Ind. Electron. 63(9), 5632–5640 (2016)

    Article  Google Scholar 

  124. Drucker, E.G., Lauder, G. V.: Locomotor function of the dorsal fin in teleost fishes: Experimental analysis of wake forces in sunfish. J. Exper. Biol. 204(17), 2943–2958 (2001)

    Article  Google Scholar 

  125. Mignano, A., Kadapa, S., Tangorra, J., Lauder, G.: Passing the wake: Using multiple fins to shape forces for swimming. Biomimetics 4(1), 23 (2019)

    Article  Google Scholar 

  126. Zhong, Q., Dong, H., Quinn, D.B.: How dorsal fin sharpness affects swimming speed and economy. J. Fluid Mech. 878, 370–385 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  127. Wen, L., Ren, Z., Di Santo, V., Hu, K., Yuan, T., Wang, T., Lauder, G.V.: Understanding fish linear acceleration using an undulatory biorobotic model with soft fluidic elastomer actuated morphing median fins. Soft Robot. 5(4), 375–388 (2018)

    Article  Google Scholar 

  128. Han, P., Lauder, G. V., Dong, H.: Hydrodynamics of median-fin interactions in fish-like locomotion: Effects of fin shape and movement. Phys. Fluids 32(1), 011902 (2020). 2020

    Article  Google Scholar 

  129. Hu, Y., Zhao, W., Wang, L.: Vision-based target tracking and collision avoidance for two autonomous robotic fish. IEEE Trans. Ind. Electron. 56(5), 1401–1410 (2009)

    Article  Google Scholar 

  130. Liang, J., Wang, T., Wen, L.: Development of a two-joint robotic fish for real-world exploration. J. Field Robot. 28(1), 70–79 (2011). [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/rob.21514/abstract

    Article  Google Scholar 

  131. Zhong, Y., Xie, F., Song, J., Du, R.: Implementation and depth control of an active and compliant propelled robot fish. In: Proceeding of 2017 IEEE International Conference on Robotics and Biomimetics. IEEE, Macau SAR, pp 2331–2336 (2017)

  132. Wang, W., Liu, J., Xie, G., Wen, L., Zhang, J.: A bio-inspired electrocommunication system for small underwater robots. Bioinspir. Biomim. 12, 036002 (2017)

    Article  Google Scholar 

  133. Zhou, Y., Wang, W., Zhang, H., Wang, C., Xu, G., Xie, G.: Communication distance correlates positively with electrode distance in underwater electrocommunication. In: Proceeding of 2018 IEEE International Conference on Robotics and Biomimetics. EEE, Kuala Lumpur, pp 88–93 (2018)

  134. Zheng, X., Wang, C., Fan, R., Xie, G.: Artificial lateral line based local sensing between two adjacent robotic fish. Bioinspir. Biomim. 13, 016002 (2018)

    Article  Google Scholar 

  135. Bonnet, F., Gribovskiy, A., Halloy, J., Mondada, F.: Closed-loop interactions between a shoal of zebrafish and a group of robotic fish in a circular corridor. Swarm Intell. 12(3), 227–244 (2018). [Online]. Available: https://doi.org/10.1007/s11721-017-0153-6

    Article  Google Scholar 

  136. Swain, D.T., Couzin, I.D., Leonard, N.E.: Real-time feedback-controlled robotic fish for behavioral experiments with fish schools. Proc. IEEE 100(1), 150–163 (2012)

    Article  Google Scholar 

  137. Ryuh, Y.S., Yang, G. H., Liu, J., Hu, H.: A school of robotic fish for mariculture monitoring in the sea coast. J. Bionic Eng. 12(1), 37–46 (2015)

    Article  Google Scholar 

  138. Li, L., Liu, A., Wang, W., Ravi, S., Fu, R., Yu, J., Xie, G.: Bottom-level motion control for robotic fish to swim in groups: Modeling and experiments. Bioinspir. Biomim. 14, 046001 (2019)

    Article  Google Scholar 

  139. Coral, W., Rossi, C., Curet, O. M., Castro, D.: Design and assessment of a flexible fish robot actuated by shape memory alloys. Bioinspir. Biomim. 13, 056009 (2018)

    Article  Google Scholar 

  140. Li, T., Li, G., Liang, Y., Cheng, T., Dai, J., Yang, X., Liu, B., Zeng, Z., Huang, Z., Luo, Y., Xie, T., Yang, W.: Fast-moving soft electronic fish. Sci. Adv. 3(4), e1602045 (2017)

    Article  Google Scholar 

  141. Cheng, T., Li, G., Liang, Y., Zhang, M., Liu, B., Wong, T.W., Forman, J., Chen, M., Wang, G., Tao, Y., Li, T.: Untethered soft robotic jellyfish. Smart Mater. Struct. 28(1), 015019 (2019). [Online]. Available: https://doi.org/10.1088/1361-665X/aaed4f

    Article  Google Scholar 

  142. Lou, J., Yang, Y., Chen, T., Ren, X., Jia, Z.: Oscillating performance and propulsion mechanism of biomimetic underwater oscillatory propulsion by resonant actuation of macro fiber composites. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 234(8), 1660–1672 (2020)

    Article  Google Scholar 

  143. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)

    Article  Google Scholar 

Download references

Funding

The paper is funded by Natural Science Foundation of Guangdong Province (#2020A1515110692), Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems (#2019B121205007), Shenzhen Institute of Artificial Intelligence and Robotics for Society, and SIAT-CUHK Joint Laboratory of Precision Engineering.

Author information

Authors and Affiliations

Authors

Contributions

Fengran Xie: conceptualization; data analysis; draft the manuscript

Qiyang Zuo: literature search;

Qinglong Chen: literature search

Haitao Fang: funding acquisition; data analysis

Kai He:revise the manuscript; funding acquisition; resource

Ruxu Du: revise the manuscript; supervision; funding acquisition

Yong Zhong: review; data analysis; edit

Zheng Li: review; edit

Corresponding author

Correspondence to Fengran Xie.

Ethics declarations

Ethics approval

The manuscript is not submitted to more than one journal for simultaneous consideration. The submitted work is original and has not been published elsewhere in any form or language (partially or in full).

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Consent to Participate

Written informed consent was obtained from every author.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The paper is funded by Natural Science Foundation of Guangdong Province (#2020A1515110692), Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems (#2019B121205007), Shenzhen Institute of Artificial Intelligence and Robotics for Society, and SIAT-CUHK Joint Laboratory of Precision Engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, F., Zuo, Q., Chen, Q. et al. Designs of the Biomimetic Robotic Fishes Performing Body and/or Caudal Fin (BCF) Swimming Locomotion: A Review. J Intell Robot Syst 102, 13 (2021). https://doi.org/10.1007/s10846-021-01379-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01379-1

Keywords

Navigation