Skip to main content
Log in

Optimal Multi-Criteria Waypoint Selection for Autonomous Vehicle Navigation in Structured Environment

Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper deals with autonomous navigation of unmanned ground vehicles (UGV). The UGV has to reach its assigned final configuration in a structured environments (e.g. a warehouse or an urban environment), and to avoid colliding neither with the route boundaries nor any obstructing obstacles. In this paper, vehicle planning/set-points definition is addressed. A new efficient and flexible methodology for vehicle navigation throughout optimal and discrete selected waypoints is proposed. Combining multi-criteria optimization and expanding tree allows safe, smooth and fast vehicle overall navigation. This navigation through way-points permits to avoid any path/trajectory planning which could be time consuming and complex, mainly in cluttered and dynamic environment. To evaluate the flexibility and the efficiency of the proposed methodology based on expanding tree (taking into account the vehicle model and uncertainties), an important part of this paper is dedicated to give an accurate comparison with another proposed optimization based on the commonly used grid map. A set of simulations, comparison with other methods and experiments, using an urban electric vehicle, are presented and demonstrate the reliability of our proposals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbadi, A., Matousek, R., Petr Minar, P.S.: RRTs review and options. In: Proceedings of the International Conference on Energy, Environment, Economics, Devices, Systems, Communications, Computers (2011)

  2. Adouane, L., Benzerrouk, A., Martinet, P.: Mobile robot navigation in cluttered environment using reactive elliptic trajectories. In: Proceedings of the 18th IFAC World Congress (2011)

  3. Aicardi, M., Casalino, G., Bicchi, A., Balestrino, A.: Closed loop steering of unicycle like vehicles via lyapunov techniques. J. Math. Mech. IEEE 2(1), 27–35 (1995)

    Google Scholar 

  4. Bellman, R.: A markovian decision process. J. Math. Mech. 6, 679–684 (1957)

    MathSciNet  MATH  Google Scholar 

  5. Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. I. Athena Scientific (1995)

  6. Bonfè, M., Secchi, C., Scioni, E.: Online trajectory generation for mobile robots with kinodynamic constraints and embedded control systems. In: Proceedings of the 10th International IFAC Symposium on Robot Control. Croatia (2012)

  7. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT Press (2005)

  8. Connors, J., Elkaim, G.H.: Manipulating b-spline based paths for obstacle avoidance in autonomous ground vehicles. In: Proceedings of the ION National Technical Meeting, ION NTM 2007 San Diego (2007)

  9. Consolini, L., Morbidi, F., Prattichizzo, D., Tosques, M.: Leader-follower formation control of nonholonomic mobile robots with input constraints. Automatica 44(5), 1343–1349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gu, T., Dolan, J.M.: On-road motion planning for autonomous vehicles. In: Su, C.Y., Rakheja, S., Liu, H. (eds.) Intelligent Robotics and Applications, vol. 7508. Springer Berlin Heidelberg (2012)

  11. Horst, J., Barbera, A.: Trajectory generation for an on-road autonomous vehicle. Proceedings of the SPIE, Unmanned Systems Technology VIII (2006)

    Google Scholar 

  12. The Institut Pascal Data Sets. http://ipds.univ-bpclermont.fr (2013)

  13. Jazar, R.N.: Vehicle Dynamics: Theory and Application, Chapter 7. Springer-Verlag (2014)

  14. Kallem, V., Komoroski, A., Kumar, V.: Sequential composition for navigating a nonholonomic cart in the presence of obstacles. IEEE Trans. Robot. 27(6), 1152–1159 (2011)

    Article  Google Scholar 

  15. Karaman, S., Frazzoli, E.: Sampling-based Algorithms for Optimal Motion Planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

    Article  MATH  Google Scholar 

  16. Khalil, H.K.: Nonlinear Systems. Prentice Hall (2002). (1986)

  17. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5, 90–99 (1986)

    Article  Google Scholar 

  18. Kuwata, Y., Fiore, G.A., Teo, J., Frazzoli, E., How, J.P.: Motion planning for urban driving using rrt. In: International Conference on Intelligent Robots and Systems, pp. 1681–1686 (2008)

  19. Labakhua, L., Nunes, U., Rodrigues, R., Leite, F.: Smooth trajectory planning for fully automated passengers vehicles: Spline and clothoid based methods and its simulation. In: Cetto, J., Ferrier, J.L., Costa dias Pereira, J.M., Filipe, J. (eds.) Informatics in Control Automation and Robotics, Lecture Notes Electrical Engineering, vol. 15, pp. 169–182. Springer Berlin Heidelberg (2008)

  20. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Boston (1991)

    Book  MATH  Google Scholar 

  21. LaValle, S. M.: Planning Algorithms. Cambridge University Press (2006)

  22. Lee, J.W., Litkouhi, B.: A unified framework of the automated lane centering/changing control for motion smoothness adaptation. In: Proceedings of the 15th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 282–287 (2012)

  23. Luca, A.D., Oriolo, G., Samson, C.: Feedback control of a nonholonomic car-like robot. In: Laumond, J.P. (ed.) Proceedings of the Robot Motion Planning and Control, pp. 171–253. Springer-Verlag, Berlin (1998)

  24. Maalouf, E., Saad, M., Saliah, H.: A higher level path tracking controller for a four-wheel differentially steered mobile robot. Robot. Auton. Syst. 54, 23–33 (2006)

    Article  Google Scholar 

  25. Martins, M.M., Santos, C.P., Frizera-Neto, A., Ceres, R.: Assistive mobility devices focusing on smart walkers: Classification and review. Robot. Auton. Syst. 60(4), 548–562 (2012)

    Article  Google Scholar 

  26. Rucco, A., Notarstefano, G., Hauser, J.: Computing minimum lap-time trajectories for a single-track car with load transfer. In: Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, pp. 6321–6326 (2012)

  27. Sezen, B.: Modeling automated guided vehicle systems in material handling. Otomatiklestirilmi Rehberli Arac Sistemlerinin Transport Tekniginde Modellemesi. Dou Universitesi Dergisi 4(2), 207–216 (2011)

    Google Scholar 

  28. Sharma, S., Taylor, M.E.: Autonomous waypoint selection for navigation and path planning: A navigation framework for multiple planning algorithms. Tech. Rep. (2012)

  29. Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics, Part E-34. Springer (2008)

  30. Stoeter, S.A., Rybski, P.E., Stubbs, K.N., McMillen, C.P., Gini, M., Hougen, D.F., Papanikolopoulos, N.: A robot team for surveillance tasks: Design and architecture. Robot. Auton. Syst. 40(2-3), 173–183 (2002)

    Article  MATH  Google Scholar 

  31. Szczerba, R., Galkowski, P., Glicktein, I., Ternullo, N.: Robust algorithm for real-time route planning. IEEE Trans. Aerosp. Electron. Syst. 36(3), 869–878 (2000)

    Article  Google Scholar 

  32. Vaz, D.A., Inoue, R.S., Grassi Jr. V.: Kinodynamic motion planning of a skid-steering mobile robot using rrts. In: Proceedings of the 2010 Latin American Robotics Symposium and Intelligent Robotics Meeting, LARS ’10, pp. 73–78. IEEE Computer Society (2010)

  33. Vilca, J., Adouane, L., Mezouar, Y., Lébraly, P.: An overall control strategy based on target reaching for the navigation of an urban electric vehicle. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’13). Tokyo (2013)

  34. Ziegler, J., Werling, M., Schroeder, J.: Navigating car-like robots in unstructured environment using an obstacle sensitive cost function. In: Proceedings of the IEEE Intelligent Vehicle Sympsium (IV), pp. 787–791. Netherlands (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Vilca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilca, J., Adouane, L. & Mezouar, Y. Optimal Multi-Criteria Waypoint Selection for Autonomous Vehicle Navigation in Structured Environment. J Intell Robot Syst 82, 301–324 (2016). https://doi.org/10.1007/s10846-015-0223-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-015-0223-1

Keywords

Navigation