Skip to main content

Advertisement

Log in

Inverse Kinematics of Human Arm Based on Multisensor Data Integration

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

The paper considers a technique for computation of the inverse kinematic model of the human arm. The approach is based on measurements of the hand position and orientation as well as acceleration and angular rate of the upper arm segment. A quaternion description of orientation is used to avoid singularities in representations with Euler angles. A Kalman filter is designed to integrate sensory data from three different types of sensors. The algorithm enables estimation of human arm posture, which can be used in trajectory planning for rehabilitation robots, evaluation of motion of patients with movement disorders, and generation of virtual reality environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tejima, N.: Rehabilitation robotics: a review. Adv. Robot. 14, 551–564 (2000)

    Article  Google Scholar 

  2. Lenarčič, J., Klopčar, N.: Positional kinematics of humanoid arms. Robotica 24, 105–112 (2006)

    Google Scholar 

  3. Korein, J.: A geometric investigation of reach. Ph.D. Dissertation, University of Pennsylvania (1985)

  4. Tolani, D., Badler, N.I.: Real-time inverse kinematics of the human arm. Presence 5, 393–401 (1996)

    Google Scholar 

  5. Koga, Y., Kondo, K., Kuffner, J., Latombe, J.: Planning motions with intentions. In: Proc., SIGGRAPH’94, Orlando, Florida, July 24-29, pp. 395–407 (1994)

  6. Soechting, J.F., Flanders, M.: Sensorimotor representations for pointing to targets in three dimensional space. J. Neurophysiol. 62, 582–594 (1989)

    Google Scholar 

  7. Loftin, R.B., Maida, J.C., Yang, J.: Inverse kinematics of the human arm. Technical report, The University of Houston, Texas (1997)

  8. Tsiotras, P., Longuski, J.M.: A new parametrization of the attitute kinematics. J. Astronaut. Sci. 43, 243–263 (1995)

    MathSciNet  Google Scholar 

  9. Spring, K.W.: Euler parameters and the use of quaternion algebra in the manipulation of finite rotations: a review. Mech. Mach. Theory 21, 365–373 (1986)

    Article  Google Scholar 

  10. Shuster, M.D.: A survey of attitude representations. J. Astronaut. Sci. 41, 439–517 (1993)

    MathSciNet  Google Scholar 

  11. Chou, J.C.K.: Quaternion kinematic and dynamic differential equations. IEEE Trans. Robot. Autom. 8, 53–64 (1992)

    Article  Google Scholar 

  12. Marins, J.L., Yun, X., Bachmann, E.R., McGhee, R.B., Zyda, M.J.: An extended kalman filter for quaternion-based orientation estimation using marg sensors. In: Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Hawaii, pp. 2003–2011 (2001)

  13. Yun, X., Lizarraga, M., Bachmann, E.R., McGhee, R.B.: An improved quaternion-based kalman filter for real-time tracking of rigid body orientation. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, pp. 1074–1079 (2003)

  14. Kong, X.: INS algorithm using quaternion model for low cost IMU. Robot. Auton. Syst. 46, 221–246 (2004)

    Article  Google Scholar 

  15. Natale, C.: Interaction Control of Robot Manipulators. Springer, Berlin Heidelberg New York (2003)

    MATH  Google Scholar 

  16. Stavdahl, O., Bondhus, A.K., Pettersen, K.Y., Malvig, K.E.: Optimal statistical operators for 3-dimensionsl rotational data: Geometric interpretations and application to prosthesis kinematics. Robotica 23, 283–292 (2005)

    Article  Google Scholar 

  17. Tolani, D., Goswami, A., Badler, N.I.: Real–time inverse kinematics techniques for anthropomorphic limbs. Graph. Models 62, 353–388 (2000)

    Article  MATH  Google Scholar 

  18. Lee, J., Ha, I.: Sensor fusion and calibration for motion captures using accelerometers. In: Proceedings of the 1999 IEEE International Conference on Robotics & Automation, Detroit, Michigan, pp. 1954–1959 (1999)

  19. Mihelj, M., Munih, M.: Estimation of human arm angles using hand pose data and upper arm radial acceleration measurements. In: Proceedings, 8th International Conference on Rehabilitation Robotics, Daejeon, Korea, pp. 302–305 (2003)

  20. Ang, D.G.-E., Elkaim, G.H., Powell, J.D., Parkinson, B.W.: A gyro-free quaternion based attitude determination system suitable for implementation using low cost sensors. In: Proceedings of IEEE 2000 Position Location and Navigation Symposium, San Diego, California, pp. 185–192 (2000)

  21. Kuipers, J.B.: Quaternions and Rotation Sequences. Addison-Wesley, Reading, Massachusetts (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matjaž Mihelj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihelj, M. Inverse Kinematics of Human Arm Based on Multisensor Data Integration. J Intell Robot Syst 47, 139–153 (2006). https://doi.org/10.1007/s10846-006-9079-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-006-9079-8

Key words

Navigation