Skip to main content
Log in

Automatic color pattern recognition of multispectral printed fabric images

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Printed fabrics often have rich colors and variable patterns in different sizes and shapes, which make it difficult to achieve accurate pattern recognition and color measurement using traditional spectrophotometers and digital cameras. This paper develops a grid-based density peaks clustering (GDPC) algorithm to automatically recognize patterns and extract colors of multispectral images of printed fabrics. The multispectral images captured by a self-developed multispectral imaging system is firstly converted into color images in CIELAB color space and three principal components are calculated by applying principal component analysis to reduce the dimensions of the multispectral images. During the multispectral image processing, the noise pixels are removed by calculating the local stability of each pixel, and then the remaining stable pixels are clustered using proposed GDPC algorithm based on three CIELAB color channels and three principal components. Compared with widely-used color clustering algorithms, the proposed GDPC algorithm can recognize the color patterns from more intricate multispectral printed fabric images with higher accuracy and less computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Agrawal, R., Gehrke, J., Gunopulos, D., & Raghavan, P. (1998). Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 94–105

  • Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495.

    Article  Google Scholar 

  • Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms (pp. 95–154). New York: Springer.

    Book  Google Scholar 

  • Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics-Theory and Methods, 3(1), 1–27.

    Article  Google Scholar 

  • Chang, C.-H., Xu, P., Xiao, R., & Srikanthan, T. (2005). New adaptive color quantization method based on self-organizing maps. IEEE Transactions on Neural Networks, 16(1), 237–249.

    Article  Google Scholar 

  • Chaurasia, A., & Culurciello, E. (2017). Linknet: Exploiting encoder representations for efficient semantic segmentation. In: Proceedings of IEEE Visual Communications and Image Processing, pp. 1–4

  • Cheng, Q., Liu, Z., Huang, J., & Cheng, G. (2016). Community detection in hypernetwork via density-ordered tree partition. Applied Mathematics and Computation, 276, 384–393.

    Article  Google Scholar 

  • Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2, 224–227.

    Article  Google Scholar 

  • Guo, L., Lin, J.-H., Guo, Q., & Liu, J.-G. (2016). Identifying multiple influential spreaders in term of the distance-based coloring. Physics Letters A, 380(7–8), 837–842.

    Article  Google Scholar 

  • Hastie, T., & Tibshirani, R. (1996). Discriminant adaptive nearest neighbor classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(6), 607–616.

    Article  Google Scholar 

  • Kanjanawanishkul, K., & Uyyanonvara, B. (2005). Novel fast color reduction algorithm for time-constrained applications. Journal of Visual Communication and Image Representation, 16(3), 311–332.

    Article  Google Scholar 

  • Kuo, C.-F.J., & Kao, C.-Y. (2008). Automatic color separating system for printed fabric using the self-organizing map network approach. Fibers and Polymers, 9(6), 708–714.

    Article  Google Scholar 

  • Kuo, C.-F.J., Kao, C.-Y., & Chiu, C.-H. (2009). Integrating a genetic algorithm and a self-organizing map network for an automatically separating color printed fabric system. Textile Research Journal, 79(13), 1235–1244.

    Article  Google Scholar 

  • Kuo, C.-F.J., & Shih, C.-Y. (2011). Printed fabric computerized automatic color separating system. Textile Research Journal, 81(7), 706–713.

    Article  Google Scholar 

  • Kuo, C.-F.J., Shih, C.-Y., Kao, C.-Y., & Lee, J.-Y. (2005). Color and pattern analysis of printed fabric by an unsupervised clustering method. Textile Research Journal, 75(1), 9–12.

    Article  Google Scholar 

  • Kuo, C.-F.J., Shih, C.-Y., & Lee, J.-Y. (2008). Separating color and identifying repeat pattern through the automatic computerized analysis system for printed fabrics. Journal of Information Science & Engineering, 24(2), 453–467.

    Google Scholar 

  • Lin, G., Milan, A., Shen, C., & Reid, I. (2017). Refinenet: Multi-path refinement networks for high-resolution semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1925–1934

  • Liu, J., Jiang, H., Liu, X., & Chai, Z. (2013). Automatic measurement for dimensional changes of woven fabrics based on texture. Measurement Science and Technology, 25(1), 015602.

    Article  Google Scholar 

  • Li, J., Wang, W., Deng, N., & Xin, B. (2020). A novel digital method for weave pattern recognition based on photometric differential analysis. Measurement, 152, 107336.

    Article  Google Scholar 

  • Malaca, P., Rocha, L. F., Gomes, D., Silva, J., & Veiga, G. (2019). Online inspection system based on machine learning techniques: real case study of fabric textures classification for the automotive industry. Journal of Intelligent Manufacturing, 30(1), 351–361.

    Article  Google Scholar 

  • Meng, S., Pan, R., Gao, W., Zhou, J., Wang, J., & He, W. (2021). A multi-task and multi-scale convolutional neural network for automatic recognition of woven fabric pattern. Journal of Intelligent Manufacturing, 32(4), 1147–1161.

    Article  Google Scholar 

  • Mingoti, S. A., & Lima, J. O. (2006). Comparing SOM neural network with fuzzy c-means, k-means and traditional hierarchical clustering algorithms. European Journal of Operational Research, 174(3), 1742–1759.

    Article  Google Scholar 

  • Mo, H., Xu, B., Ouyang, W., & Wang, J. (2017). Color segmentation of multi-colored fabrics using self-organizing-map based clustering algorithm. Textile Research Journal, 87(3), 369–380.

    Article  Google Scholar 

  • Ng, A.Y., Jordan, M.I., & Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856

  • Nyström, D. (2006). Colorimetric and multispectral image acquisition. PhD thesis, Institutionen för teknik och naturvetenskap

  • Ouyang, W., Xu, B., & Yuan, X. (2019). Color segmentation in multicolor images using node-growing self-organizing map. Color Research & Application, 44(2), 184–193.

    Article  Google Scholar 

  • Pointer, M. (1981). A comparison of the cie 1976 colour spaces. Color Research & Application, 6(2), 108–118.

    Article  Google Scholar 

  • Rodarmel, C., & Shan, J. (2002). Principal component analysis for hyperspectral image classification. Surveying and Land Information Science, 62(2), 115–122.

    Google Scholar 

  • Rodriguez, A., & Laio, A. (2014). Clustering by fast search and find of density peaks. Science, 344(6191), 1492–1496.

    Article  Google Scholar 

  • Schneider, D., Gloy, Y.-S., & Merhof, D. (2014). Vision-based on-loom measurement of yarn densities in woven fabrics. IEEE Transactions on Instrumentation and Measurement, 64(4), 1063–1074.

    Article  Google Scholar 

  • Shen, H.-L., Xin, J. H., & Shao, S.-J. (2007). Improved reflectance reconstruction for multispectral imaging by combining different techniques. Optics Express, 15(9), 5531–5536.

    Article  Google Scholar 

  • Wang, X., Georganas, N. D., & Petriu, E. M. (2010). Fabric texture analysis using computer vision techniques. IEEE Transactions on Instrumentation and Measurement, 60(1), 44–56.

    Article  Google Scholar 

  • Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1–3), 37–52.

    Article  Google Scholar 

  • Xiao, Y., & Yu, J. (2012). Partitive clustering (k-means family). Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(3), 209–225.

    Google Scholar 

  • Xin, J.H., Shen, H.-l., & Ge, Q.-G. (2020). Multispectral color imaging device based on integrating sphere lighting and calibration methods thereof. Google Patents. US Patent 10,798,317

  • Xu, X., Ding, S., Du, M., & Xue, Y. (2018). Dpcg: An efficient density peaks clustering algorithm based on grid. International Journal of Machine Learning and Cybernetics, 9(5), 743–754.

    Article  Google Scholar 

  • Zhang, D.-Q., & Chen, S.-C. (2003). Clustering incomplete data using kernel-based fuzzy c-means algorithm. Neural Processing Letters, 18(3), 155–162.

    Article  Google Scholar 

  • Zhang, J., Pan, R., Gao, W., & Xiang, J. (2017). Weave pattern recognition by measuring fiber orientation with Fourier transform. The Journal of the Textile institute, 108(4), 622–630.

    Article  Google Scholar 

  • Zhang, J., Pan, R., Gao, W., Xu, B., & Li, W. (2016). Automatic detection of layout of color yarns of yarn-dyed fabric. Part 2: Region segmentation of double-system-mélange color fabric. Color Research & Application, 41(6), 626–635.

    Article  Google Scholar 

  • Zhang, J., Pan, R., Gao, W., Xu, B., & Li, W. (2017). Automatic detection of layout of color yarns of yarn-dyed fabric. Part 3: Double-system-mélange color fabrics. Color Research & Application, 42(2), 250–260.

  • Zhang, J., Pan, R., Gao, W., & Zhu, D. (2015). Automatic detection of layout of color yarns of yarn-dyed fabric. Part 1: Single-system-mélange color fabrics. Color Research & Application, 40(6), 626–636.

    Article  Google Scholar 

  • Zhang, J., Pan, R., Gao, W., & Zhu, D. (2015). Automatic recognition of the color effect of yarn-dyed fabric by the smallest repeat unit recognition algorithm. Textile Research Journal, 85(4), 432–446.

    Article  Google Scholar 

  • Zhang, J., Wang, J., Pan, R., Zhou, J., & Gao, W. (2018). A computer vision-based system for automatic detection of misarranged warp yarns in yarn-dyed fabric. Part I: continuous segmentation of warp yarns. The Journal of the Textile Institute, 109(5), 577–584.

    Article  Google Scholar 

  • Zhang, J., Xin, B., & Wu, X. (2014). Density measurement of yarn dyed woven fabrics based on dual-side scanning and the fft technique. Measurement Science and Technology, 25(11), 115007.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Innovation and Technology Fund, Ref no. ITP/048/13TP. from the Innovation and Technology Commission of the Hong Kong SAR Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Xin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yao, P., Wu, H. et al. Automatic color pattern recognition of multispectral printed fabric images. J Intell Manuf 34, 2747–2763 (2023). https://doi.org/10.1007/s10845-022-01947-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-022-01947-8

Keywords

Navigation