Skip to main content

Advertisement

Log in

Grassland intensification strongly reduces butterfly diversity in the Westerwald mountain range, Germany

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

The dramatic loss of biodiversity in agricultural landscapes poses a substantial challenge to conservation. Losses are mainly caused by an all-pervasive intensification of agricultural management over recent decades, negatively affecting a wealth of taxa including insects. Against this background, we here set out to quantify the effects of grassland management on butterflies, comprising an important indicator and pollinator group. We recorded butterflies along 47 transects in the Westerwald mountain range, western Germany, spanning an intensification gradient ranging from grassland fallows via traditionally and intensively managed hay meadows through to silage grasslands. The numbers of species, individuals, threatened species, individuals of threatened species, and additionally α-diversity and conservation value were highest on traditionally managed grasslands followed by fallows, intensively managed grasslands, and finally silage grasslands. Comparing traditionally managed with silage grasslands, losses amounted on average to 44% of species, 58% of individuals, 75% of threatened species, and 90% of individuals of threatened species. Overall, the conservation value as an integral indicator decreased by 86%. Our study indicates a near linear decrease in biodiversity with increasing management intensity (mowing frequency, fertilization), while fallows also comprised valuable butterfly habitat. This study exemplifies the dramatic loss of insects in agricultural landscapes through intensification, and highlights the value of traditionally managed grasslands but also fallows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allen-Wardell G, Bernhardt P, Bitner R et al (1998) The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv Biol 12:8–17

    Article  Google Scholar 

  • Bauerfeind SS, Fischer K (2005) Effects of adult-derived carbohydrates, amino acids and micronutrients on female reproduction in a fruit-feeding butterfly. J Insect Physiol 51:545–554

    Article  CAS  PubMed  Google Scholar 

  • Benton TG, Bryant DM, Cole L, Crick HQP (2002) Linking agriculture practice to insect and bird populations: a historical study over three decades. J Appl Ecol 39:673–687

    Article  Google Scholar 

  • BfN (Bundesamt für Naturschutz) (2011) Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Nat Biol Vielfalt 70(3):1–716

    Google Scholar 

  • Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354

    Article  CAS  PubMed  Google Scholar 

  • Brooks TM, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Rylands AB, Konstant WR, Flick P, Pilgrim J, Oldfield S, Magin G, Hilton-Taylor G (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16:909–923

    Article  Google Scholar 

  • Broyer J, Pelloli L, Curtet L, Chazal R (2017) On habitat characteristics driving meadow passerine densities in lowland hay-meadow systems in France. Agric Ecosyst Environ 237:24–30

    Article  Google Scholar 

  • Butler SJ, Boccaccio L, Gregory RD, Vorisek P, Norris K (2010) Quantifying the impact of land-use change to the European farmland bird populations. Agric Ecosyst Environ 137:348–357

    Article  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    Article  CAS  PubMed  Google Scholar 

  • Cattin MF, Blandenier G, Banasek-Richter C, Bersier LF (2003) The impact of mowing as a management strategy for wet meadows on spider (Araneae) communities. Biol Conserv 113:179–188

    Article  Google Scholar 

  • Cizek O, Zamecnik J, Tropek R, Kocarek P, Konvicka M (2012) Diversification of mowing regime increases arthropods diversity in species-poor cultural hay meadows. J Insect Conserv 16:215–226

    Article  Google Scholar 

  • Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc R Soc Lond B 268:25–29

    Article  Google Scholar 

  • Donald PF, Sanderson FJ, Burfield IJ, van Bommel FPJ (2006) Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric Ecosyst Environ 116:189–196

    Article  Google Scholar 

  • Durán AP, Duffy JP, Gaston KJ (2014) Exclusion of agricultural lands in spatial conservation prioritization strategies: consequences for biodiversity and ecosystem service representation. Proc R Soc Lond B 281:20141529

    Article  Google Scholar 

  • Erhardt A (1985) Diurnal Lepidoptera: sensitive indicators of cultivated and abandoned grassland. J Appl Ecol 22:849–861

    Article  Google Scholar 

  • Fischer K (1997) Fauna und Flora des Westerwaldes: zur naturschutzfachlichen Bedeutung einer Mittelgebirgsregion. Pollichia 35:21–35

    Google Scholar 

  • Fischer K, Busch R, Fahl G, Kunz M, Knopf M (2013) Habitat preferences and breeding success of Whinchats (Saxicola rubetra) in the Westerwald mountain range. J Ornithol 154:339–349

    Article  Google Scholar 

  • Fischer K, Fiedler K (2000) Response of the copper butterfly Lycaena tityrus to increased leaf nitrogen in natural food-plants: evidence against the nitrogen limitation hypothesis. Oecologia 124:235–241

    Article  CAS  PubMed  Google Scholar 

  • Fischer K, O’Brian DM, Boggs CL (2004) Allocation of larval and adult resources to reproduction in a fruit-feeding butterfly. Funct Ecol 18:656–663

    Article  Google Scholar 

  • Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Richers BT, Lin B, Simpson N, Mayfield M, DeClerck F (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33

    Article  PubMed  Google Scholar 

  • Görn S, Dobner B, Suchanek A, Fischer K (2014) Assessing human impact on fen biodiversity: effects of different management regimes on butterfly, grasshopper, and carabid beetle assemblages. Biodivers Conserv 23:309–326

    Article  Google Scholar 

  • Görn S, Fischer K (2011) Niedermoore Nordostdeutschlands bewerten: Vorschlag für ein faunistisches Bewertungsverfahren. Naturschutz Landschaftsplanung 43:211–217

    Google Scholar 

  • Habel JC, Segerer A, Ulrich W, Torchyk O, Weisser WW, Schmitt T (2016) Butterfly community shifts over two centuries. Conserv Biol 30:754–762

    Article  PubMed  Google Scholar 

  • Habel JC, Ulrich W, Biburger N, Seibold S, Schmitt T (2019) Agricultural intensification drives butterfly decline. Insect Conserv Divers 12:289–295

    Google Scholar 

  • Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, Stenmans W, Müller A, Sumser H, Hörren T, Goulson D, De Kroon H (2017) More than 75% decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12:e0185809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Syst 29:83–112

    Article  Google Scholar 

  • Kühn E, Musche M, Harpke A, Feldmann R, Metzler B, Wiemers M, Hirneisen N, Settele J (2014) Tagfalter-Monitoring Deutschland – Anleitung für Transektzähler. Oedippus 27:1–47

    Google Scholar 

  • Kumaraswamy S, Kunte K (2013) Integrating biodiversity and conservation with modern agricultural landscapes. Biodivers Conserv 12:2735–2750

    Article  Google Scholar 

  • Kurze S, Heinken T, Fartmann T (2018) Nitrogen enrichment in host plants increases the mortality of common Lepidoptera species. Oecologia 188:1227–1237

    Article  PubMed  Google Scholar 

  • Maes D, Van Dyck H (2001) Butterfly diversity loss in Flanders (north Belgium): Europe's worst case scenario? Biol Conserv 99:263–276

    Article  Google Scholar 

  • Marini L, Fontana P, Scotton M, Klimek S (2008) Vascular plant and Orthoptera diversity in relation to grassland management and landscape composition in the European Alps. J Appl Ecol 45:361–370

    Article  Google Scholar 

  • Maxwell SL, Fuller RA, Brooks TM, Watson JE (2016) Biodiversity: the ravages of guns, nets and bulldozers. Nature 536:143–145

    Article  CAS  PubMed  Google Scholar 

  • Naeem S, Duffy JE, Zavaleta E (2012) The functions of biological diversity in an age of extinction. Science 336:1401–1406

    Article  CAS  PubMed  Google Scholar 

  • Öckinger E, Eriksson AK, Smith HG (2006) Effects of grassland abandonment, restoration and management on butterflies and vascular plants. Biol Conserv 133:291–300

    Article  Google Scholar 

  • Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752

    Article  CAS  PubMed  Google Scholar 

  • Rada S, Schweiger O, Harpke A, Kühn E, Kuras T, Settele J, Musche M (2019) Protected areas do not mitigate biodiversity declines: a case study on butterflies. Divers Distrib 25:217–224

    Article  Google Scholar 

  • Sabel K-J, Fischer E (1992) Boden- und vegetationsgeographische Untersuchungen im Westerwald. Frankfurter geowiss. Arbeiten D 7:1–268

    Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Biodiversity - global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Sawchik J, Dufrêne M, Lebrun P (2005) Distribution patterns and indicator species of butterfly assemblages of wet meadows in southern Belgium. Belg J Zool 135:43–52

    Google Scholar 

  • Schmidt A (2014) Rote Liste der Grossschmetterlinge in Rheinland-Pfalz. Ministerium für Umwelt. Landwirtschaft, Ernährung, Weinbau und Forsten Rheinland-Pfalz, Mainz

    Google Scholar 

  • Schuch S, Wesche K, Schaefer M (2012a) Long-term decline in the abundance of leafhoppers and planthoppers (Auchenorrhyncha) in Central European protected dry grasslands. Biol Conserv 149:75–83

    Article  Google Scholar 

  • Schuch S, Bock J, Krause B, Wesche K, Schaefer M (2012b) Long-term population trends in three grassland insect groups: a comparative analysis of 1951 and 2009. J Appl Entomol 136:321–331

    Article  Google Scholar 

  • van Strien AJ, van Swaay CAM, van Strien-van Liempt WTFH, Poot MJM, WallisDeVries MF (2019) Over a century of data reveal more than 80% decline in butterflies in the Netherlands. Biol Conserv 234:116–122

    Article  Google Scholar 

  • Socher SA, Prati D, Boch S, Müller J, Klaus VH, Hölzel N, Fischer M (2012) Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness. J Ecol 100:1391–1399

    Article  Google Scholar 

  • Soons MB, Hefting MM, Dorland E, Lamers LPM, Versteeg C, Bobbink R (2017) Nitrogen effects on plant species richness in herbaceous communities are more widespread and stronger than those of phosphorus. Biol Conserv 212:390–397

    Article  Google Scholar 

  • Stevens CJ, Duprè C, Dorland E, Gaudnik C, Gowing DJG, Bleeker A, Diekmann M, Alard D, Bobbink R, Fowler D, Corcket E, Mountford JO, Vandvik V, Aarrestad PA, Muller S, Dise NB (2010) Nitrogen deposition threatens species richness of grasslands across Europe. Environ Pollut 158:2940–2945

    Article  CAS  PubMed  Google Scholar 

  • Sumpich J, Konvicka M (2012) Moths and management of a grassland reserve: regular mowing and temporary abandonment support different species. Biologia 67:973–987

    Article  Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    Article  CAS  PubMed  Google Scholar 

  • Van Dyck H, van Strien AJ, Maes D, van Swaay CAM (2009) Declines in common, widespread butterflies in a landscape under intense human use. Conserv Biol 23:957–965

    Article  PubMed  Google Scholar 

  • Van Swaay C, Warren M, Loïs G (2006) Biotope use and trends of European butterflies. J Insect Conserv 10:189–209

    Article  Google Scholar 

  • Vogel G (2017) Where have all the insects gone? Science 356:576–579

    Article  CAS  PubMed  Google Scholar 

  • Wallis de Vries MF, Van Swaay CA (2006) Global warming and excess nitrogen may induce butterfly decline by microclimatic cooling. Glob Change Biol 12:1620–1626

    Article  Google Scholar 

  • Westerwaldkreis (2018) 7. Umweltbericht des Westerwaldkreises. Kreisverwaltung des Westerwaldkreises

  • Wilson JD, Evans AD, Grice PV (2009) Bird conservation and agriculture. Cambridge University Press, New York

    Google Scholar 

Download references

Acknowledgements

We are indebted to the farmers and landowners for tolerating our presence on their property.

Author information

Authors and Affiliations

Authors

Contributions

IH and KF designed the study, IH performed the field work, KF analysed the data with help from IH, IH and KF wrote the manuscript

Corresponding author

Correspondence to Klaus Fischer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

To obtain the data presented in the manuscript it has been necessary to involve animals. However, no individuals were removed from the field or killed. No human participants were involved in the work.

Informed consent

All authors consent to submission of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hannappel, I., Fischer, K. Grassland intensification strongly reduces butterfly diversity in the Westerwald mountain range, Germany. J Insect Conserv 24, 279–285 (2020). https://doi.org/10.1007/s10841-019-00195-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-019-00195-1

Key words

Navigation