Skip to main content
Log in

Diabetes mellitus aggravates ranolazine-induced ECG changes in rats

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

Diabetes mellitus (DM) is known to affect the pharmacokinetics of drugs. In this study, we evaluated the effect of DM on the liver content of CYP 3A2 enzyme. We also explored the ECG changes after administration of ranolazine in non-DM and DM rats.

Methods

First phase: 24 male Wistar rats were separated into 4 groups. The control group (n = 6) received normal saline and the DM groups (n = 18) were treated with a single dose (55 mg/kg) of streptozocin (STZ; i.p. injection), then were held for 10, 20, and 30 days, respectively. After study duration for each group, the liver CYP 3A2 protein content was determined using western blotting. Second phase: 48 male Wistar rats were classified into two groups of non-DM and DM; and each group was divided into 4 subgroups (n: 6). Experimental groups received oral doses of 20, 40, and 80 mg/kg ranolazine. DM and non-DM control groups received normal saline. Treatment lasted for 28 days, and then the ECG was recorded.

Results

Experimental DM induced by STZ caused a significant decrement in liver CYP3A2 protein content of rats on days 10 and 20 (P < 0.01), and 30 (P < 0.05) compared to the control animals. Significant increases in QT and corrected QT (QTc) intervals (P < 0.01), and bradycardia (P < 0.01) without any significant effect on PR and QRS intervals were observed in DM in comparison with non-DM groups after ranolazine treatment.

Conclusions

In summary, DM induction in animals resulted in CYP 3A2 inhibition and the prolongation of QT and QTc interval as well as bradycardia after ranolazine treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable

Code availability

Not applicable

References

  1. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98.

    PubMed  Google Scholar 

  2. Ahmad FS, et al. Hypertension, obesity, diabetes, and heart failure-free survival: the cardiovascular disease lifetime risk pooling project. JACC Heart Fail. 2016;4(12):911–9.

    PubMed  PubMed Central  Google Scholar 

  3. Kenny HC, Abel ED. Heart failure in type 2 diabetes mellitus. Circ Res. 2019;124(1):121–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Diabetes and Coronary Heart Disease. N Engl J Med. 1998;339(23):1714–6.

    Google Scholar 

  5. Shah AD, et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1· 9 million people. Lancet Diabetes Endocrinol. 2015;3(2):105–13.

    PubMed  PubMed Central  Google Scholar 

  6. Low Wang CC, et al. Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus - mechanisms, management, and clinical considerations. Circulation. 2016;133(24):2459–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. The L. Focusing on angina. The Lancet. 2015;386(9994):626.

    Google Scholar 

  8. Dostalek M, Akhlaghi F, Puzanovova M. Effect of diabetes mellitus on pharmacokinetic and pharmacodynamic properties of drugs. Clin Pharmacokinet. 2012;51(8):481–99.

    CAS  PubMed  Google Scholar 

  9. Vahabzadeh M, Mohammadpour A-H. Effect of diabetes mellitus on the metabolism of drugs and toxins. J Clin Toxicol. 2015;5(233):1–8.

    Google Scholar 

  10. Mashayekhi-Sardoo H, et al. The effect of diabetes mellitus on pharmacokinetics, pharmacodynamics and adverse drug reactions of anticancer drugs. J Cell Physiol. 2019;234(11):19339–51.

    CAS  PubMed  Google Scholar 

  11. Mashayekhi-Sardoo H, et al. Potential alteration of statin-related pharmacological features in diabetes mellitus. Biomed Res Int. 2021;2021:6698743.

    PubMed  PubMed Central  Google Scholar 

  12. Dostalek M, et al. Significantly reduced cytochrome P450 3A4 expression and activity in liver from humans with diabetes mellitus. Br J Pharmacol. 2011;163(5):937–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Reinke LA, Stohs SJ, Rosenberg H. Altered activity of hepatic mixed-function mono-oxygenase enzymes in streptozotocin-induced diabetic rats. Xenobiotica. 1978;8(10):611–9.

    CAS  PubMed  Google Scholar 

  14. Watkins JB 3rd, Sanders RA, Beck LV. The effect of long-term streptozotocin-induced diabetes on the hepatotoxicity of bromobenzene and carbon tetrachloride and hepatic biotransformation in rats. Toxicol Appl Pharmacol. 1988;93(2):329–38.

    CAS  PubMed  Google Scholar 

  15. Dong ZG, et al. Mechanism of induction of cytochrome P-450ac (P-450j) in chemically induced and spontaneously diabetic rats. Arch Biochem Biophys. 1988;263(1):29–35.

    CAS  PubMed  Google Scholar 

  16. Thummel KE, Schenkman JB. Effects of testosterone and growth hormone treatment on hepatic microsomal P450 expression in the diabetic rat. Mol Pharmacol. 1990;37(1):119–29.

    CAS  PubMed  Google Scholar 

  17. Raza H, et al. Effect of bitter melon (Momordica charantia) fruit juice on the hepatic cytochrome P450-dependent monooxygenases and glutathione S-transferases in streptozotocin-induced diabetic rats. Biochem Pharmacol. 1996;52(10):1639–42.

    CAS  PubMed  Google Scholar 

  18. Kim YC, et al. Pharmacokinetics of theophylline in diabetes mellitus rats: induction of CYP1A2 and CYP2E1 on 1,3-dimethyluric acid formation. Eur J Pharm Sci. 2005;26(1):114–23.

    CAS  PubMed  Google Scholar 

  19. Hale SL, et al. Late sodium current inhibition as a new cardioprotective approach. J Mol Cell Cardiol. 2008;44(6):954–67.

    CAS  PubMed  Google Scholar 

  20. Deng CY, et al. Effect of ranolazine on rat intrarenal arteries in vitro. Eur J Pharmacol. 2012;683(1–3):211–6.

    CAS  PubMed  Google Scholar 

  21. Allen TJ, Chapman RA. Effects of ranolazine on L-type calcium channel currents in guinea-pig single ventricular myocytes. Br J Pharmacol. 1996;118(2):249–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chaitman BR, et al. Anti-ischemic effects and long-term survival during ranolazine monotherapy in patients with chronic severe angina. J Am Coll Cardiol. 2004;43(8):1375–82.

    CAS  PubMed  Google Scholar 

  23. Sossalla S, et al. Altered Na(+) currents in atrial fibrillation effects of ranolazine on arrhythmias and contractility in human atrial myocardium. J Am Coll Cardiol. 2010;55(21):2330–42.

    CAS  PubMed  Google Scholar 

  24. Burashnikov A, et al. Atrium-selective sodium channel block as a strategy for suppression of atrial fibrillation: differences in sodium channel inactivation between atria and ventricles and the role of ranolazine. Circulation. 2007;116(13):1449–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nash DT, Nash SD. Ranolazine for chronic stable angina. The Lancet. 2008;372(9646):1335–41.

    CAS  Google Scholar 

  26. Jerling M. Clinical pharmacokinetics of ranolazine. Clin Pharmacokinet. 2006;45(5):469–91.

    CAS  PubMed  Google Scholar 

  27. Karimani A, et al. Histopathological and biochemical alterations in non-diabetic and diabetic rats following acrylamide treatment. Toxin Reviews. 2019. https://doi.org/10.1080/15569543.2019.1566263.

    Article  Google Scholar 

  28. Seedevi P, et al. Anti-diabetic activity of crude polysaccharide and rhamnose-enriched polysaccharide from G. lithophila on streptozotocin (STZ)-induced in Wistar rats. Sci Rep. 2020;10(1):556.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    CAS  PubMed  Google Scholar 

  30. Barangi S, et al. Melatonin inhibits benzo(a)pyrene-induced apoptosis through activation of the Mir-34a/Sirt1/autophagy pathway in mouse liver. Ecotoxicol Environ Saf. 2020;196:110556.

    CAS  PubMed  Google Scholar 

  31. Read MI, et al. Cardiac electrographic and morphological changes following status epilepticus: effect of clonidine. Seizure. 2014;23(1):55–61.

    PubMed  Google Scholar 

  32. Bealer SL, Metcalf CS, Little JG. Methods for ECG evaluation of indicators of cardiac risk, and susceptibility to aconitine-induced arrhythmias in rats following status epilepticus. J Vis Exp. 2011;50:1–5.

    Google Scholar 

  33. Nguyen E, et al. Ranolazine in patients with type 2 diabetes and chronic angina: a cost-effectiveness analysis and assessment of health-related quality-of-life. Int J Cardiol. 2018;273:34–8.

    PubMed  Google Scholar 

  34. Gawrońska-Szklarz B, et al. Metabolism of lidocaine by liver microsomes from streptozotocin-diabetic rats. Pol J Pharmacol. 2003;55(2):251–4.

    PubMed  Google Scholar 

  35. Gawronska-Szklarz B, et al. Lidocaine metabolism in isolated perfused liver from streptozotocin-induced diabetic rats. J Pharm Pharmacol. 2006;58(8):1073–7.

    CAS  PubMed  Google Scholar 

  36. Shimojo N, et al. Changes in amounts of cytochrome P450 isozymes and levels of catalytic activities in hepatic and renal microsomes of rats with streptozocin-induced diabetes. Biochem Pharmacol. 1993;46(4):621–7.

    CAS  PubMed  Google Scholar 

  37. Hu N, et al. Opposite effect of diabetes mellitus induced by streptozotocin on oral and intravenous pharmacokinetics of verapamil in rats. Drug Metab Dispos. 2011;39(3):419–25.

    CAS  PubMed  Google Scholar 

  38. Lee DY, et al. Changes in omeprazole pharmacokinetics in rats with diabetes induced by alloxan or streptozotocin: faster clearance of omeprazole due to induction of hepatic CYP1A2 and 3A1. J Pharm Pharm Sci. 2007;10(4):420–33.

    CAS  PubMed  Google Scholar 

  39. Barnett CR, Flatt PR, Ioannides C. Modulation of the rat hepatic cytochrome P450 composition by long-term streptozotocin-induced insulin-dependent diabetes. J Biochem Toxicol. 1994;9(2):63–9.

    CAS  PubMed  Google Scholar 

  40. Chaitman BR, et al. Effects of ranolazine with atenolol, amlodipine, or diltiazem on exercise tolerance and angina frequency in patients with severe chronic angina: a randomized controlled trial. JAMA. 2004;291(3):309–16.

    CAS  PubMed  Google Scholar 

  41. Sossalla S, Maier LS. Role of ranolazine in angina, heart failure, arrhythmias, and diabetes. Pharmacol Ther. 2012;133(3):311–23.

    CAS  PubMed  Google Scholar 

  42. Polytarchou K, Manolis AS. Ranolazine and its antiarrhythmic actions. Cardiovasc Hematol Agents Med Chem. 2015;13(1):31–9.

    CAS  PubMed  Google Scholar 

  43. Antzelevitch C, et al. Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties. Circulation. 2004;110(8):904–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kosiborod M, et al. Evaluation of ranolazine in patients with type 2 diabetes mellitus and chronic stable angina: results from the TERISA randomized clinical trial (type 2 diabetes evaluation of ranolazine in subjects with chronic stable angina). J Am Coll Cardiol. 2013;61(20):2038–45.

    CAS  PubMed  Google Scholar 

  45. Sandhiya S et al. Comparison of ranolazine and trimetazidine on glycemic status in diabetic patients with coronary artery disease - a randomized controlled trial. Journal of clinical and diagnostic research : JCDR, 2015. 9(1): p. OC01-OC5.

  46. Létienne R, et al. Evidence that ranolazine behaves as a weak beta1- and beta2-adrenoceptor antagonist in the rat [correction of cat] cardiovascular system. Naunyn Schmiedebergs Arch Pharmacol. 2001;363(4):464–71.

    PubMed  Google Scholar 

  47. Savabi F, Kirsch A. Altered functional activity and anoxic tolerance in diabetic rat isolated atria. Arch Biochem Biophys. 1990;279(1):183–7.

    CAS  PubMed  Google Scholar 

  48. Howarth FC, et al. Effects of streptozotocin-induced diabetes on action potentials in the sinoatrial node compared with other regions of the rat heart. Mol Cell Biochem. 2007;300(1–2):39–46.

    CAS  PubMed  Google Scholar 

  49. Khazraei H, Shafa M, Mirkhani H. Effect of ranolazine on cardiac microcirculation in normal and diabetic rats. Acta Physiol Hung. 2014;101(3):301–8.

    CAS  PubMed  Google Scholar 

  50. Mourouzis I, et al. The beneficial effects of ranolazine on cardiac function after myocardial infarction are greater in diabetic than in nondiabetic rats. J Cardiovasc Pharmacol Ther. 2014;19(5):457–69.

    CAS  PubMed  Google Scholar 

  51. Ueyama J, et al. Toxicity of diazinon and its metabolites increases in diabetic rats. Toxicol Lett. 2007;170(3):229–37.

    CAS  PubMed  Google Scholar 

  52. Al-Shabanah OA, et al. Effect of streptozotocin-induced hyperglycaemia on intravenous pharmacokinetics and acute cardiotoxicity of doxorubicin in rats. Pharmacol Res. 2000;41(1):31–7.

    CAS  PubMed  Google Scholar 

  53. Sadoff L. Overwhelming 5-fluorouracil toxicity in patients whose diabetes is poorly controlled. Am J Clin Oncol. 1998;21(6):605–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully appreciate the financial assurance afforded by the Vice Chancellor of Research, Mashhad University of Medical Sciences, Mashhad, Iran.

Funding

This article is a part of student dissertation (grant no. 961732).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Imenshahidi.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashayekhi-Sardoo, H., Mohammadpour, A.H., Mehri, S. et al. Diabetes mellitus aggravates ranolazine-induced ECG changes in rats. J Interv Card Electrophysiol 63, 379–388 (2022). https://doi.org/10.1007/s10840-021-01016-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-021-01016-9

Keywords

Navigation