Skip to main content
Log in

On the mass action law and the power law response in tin dioxide gas sensors

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The electrical resistance of gas sensors, based on polycrystalline metal-oxide semiconductors, obeys a power-law response with the pressure of different gases (R ~ pγ). The exponent γ can be derived resorting to the mass action law and its value depends on chemical reactions that take place at the surface of the grains. To explain the gas sensitivity, we revisit two conceptual models, regularly used in the literature: the ionosorption and the vacancy models. We show that they predict different values for the exponent γ. Also, the consequences of considering the bulk oxygen vacancies as deep levels are analyzed. Comparison of γ values obtained from both conceptual models with those found in experiments can indicate what mechanisms are possible to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Code availability

Not applicable.

References

  1. D.R. Miller, S.A. Akbar, Sens. Actuators B: Chem. 204, 250–272 (2014)

    Article  CAS  Google Scholar 

  2. I.D. Kim, A. Rothschild, H.L. Tuller, Acta Mater. 61, 974–1000 (2013)

    Article  CAS  Google Scholar 

  3. W.T. Moon, Y.K. Jun, H.S. Kim, W.S. Kim, S.H. Hong, J. Electroceram. 23, 196–199 (2009)

    Article  CAS  Google Scholar 

  4. S. Mahajan, S. Jagtap, Appl. Mater. Today. 18, 100483 (2020)

  5. N. Barsan, U. Weimar, J. Electroceram. 7, 143–167 (2001)

    Article  CAS  Google Scholar 

  6. A. Gurlo, Chem. Phys. Chem. 7, 2041–2052 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. A. Gurlo, R. Riedel, Angew. Chem. Int. Ed. 46, 3826–3848 (2007)

    Article  CAS  Google Scholar 

  8. S. Kucharski, P. Ferrer, F. Venturini, G. Held, A.S. Walton, C. Byrne, J.A. Covington, S.K. Ayyala, A.Q.M. Beale, C. Blackman, Chem. Sci. 13, 6089–6097 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. P. Mars, D.W. van Krevelen, Chem. Eng. Sci. 3, 41–59 (1954)

    Article  CAS  Google Scholar 

  10. C. Doornkamp, V. Ponec, J. Mol. Catal. A: Chem. 162, 19–32 (2000)

    Article  CAS  Google Scholar 

  11. N. Yamazoe, K. Shimanoe, Sens. Actuators B: Chem. 128, 566–573 (2008)

    Article  CAS  Google Scholar 

  12. G. Eranna, B.C. Joshi, D.P. Runthala, R.P. Gupta, Crit. Rev. Solid State Mater. Sci. 29, 111–188 (2004)

    Article  CAS  Google Scholar 

  13. N. Yamazoe, K. Suematsu, K. Shimanoe, Sens. Actuators B: Chem. 176, 443–452 (2013)

    Article  CAS  Google Scholar 

  14. N. Yamazoe, J. Fuchigami, M. Kishikawa, T. Seiyama, Surf. Sci. 86, 335–344 (1979)

    Article  CAS  Google Scholar 

  15. K.V. Sopiha, O.I. Maliyi, C. Persson, P. Wu Appl. Mater. Interfaces 13, 33664–33676 (2021)

    CAS  Google Scholar 

  16. T. Wolkenstein, Electronic Processes on Semiconductor Surfaces during Chemisorption (Consultants Bureau, New York, 1991)

    Book  Google Scholar 

  17. P.M. Desimone, F. Schipani, R. Procaccini, D.A. Mirabella, C.M. Aldao, Sens. Actuators B: Chem. 370, 132387 (2022)

    Article  CAS  Google Scholar 

  18. N. Yamazoe, K. Suematsu, K. Shimanoe, Sens. Actuators B: Chem. 163, 128–135 (2012)

    Article  CAS  Google Scholar 

  19. N. Ma, K. Suematsu, M. Yuasa, T. Kida, K. Shimanoe, A.C.S. Appl, Mater. Interfaces 7, 5863–5869 (2015)

    Article  CAS  Google Scholar 

  20. P. Shankar, J.B.B. Rayappan, Sci. Lett. J. 2015 4, 126 (2014)

    Google Scholar 

  21. M. Habgood, N. Harrison, Sur. Sci. 602(5), 1072–1079 (2008)

    Article  CAS  Google Scholar 

  22. C. Blackman, ACS Sensors 6, 3509–3516 (2021)

    Article  CAS  PubMed  Google Scholar 

  23. M. Eslamian, A. Salehi, E. Nadimi, Surf. Sci. 708, 121817 (2021)

  24. J.N. Zemel, Thin Solid Films 163, 189–202 (1988)

    Article  CAS  Google Scholar 

  25. S. Kucharski, C. Blackman, Chemosensors 9, 270 (2021)

    Article  CAS  Google Scholar 

  26. J. Ding, T.J. McAvoy, R.E. Cavicchi, S. Semancik, Sens. Actuators B: Chem. 77, 597–613 (2001)

    Article  CAS  Google Scholar 

  27. L. Zhao, X. Gong, W. Tao, T. Wang, P. Sun, F. Liu, X. Liang, F. Liu, Y. Wang, G. Lu, ACS Sensors 7, 1095–1104 (2022)

    Article  CAS  PubMed  Google Scholar 

  28. S. Samson, C.G. Fonstad, J. Appl. Phys. 44, 4618–4621 (1973)

    Article  CAS  Google Scholar 

  29. J. Maier, W. Göpel, J. Solid State Chem. 72, 293–302 (1988)

    Article  CAS  Google Scholar 

  30. K.G. Godinho, A. Walsh, G.W. Watson, J. Phys. Chem. C 113, 439–448 (2009)

    Article  CAS  Google Scholar 

  31. A.K. Singh, A. Janotti, M. Scheffler, C.G. Van de Walle, Phys. Rev. Lett. 101, 055502 (2008)

    Article  PubMed  Google Scholar 

  32. S. Lany, A. Zakutayev, T.O. Mason, J.F. Wager, K.R. Poeppelmeier, J.D. Perkins, Phys. Rev. Lett. 108, 016802 (2012)

    Article  CAS  PubMed  Google Scholar 

  33. C. Kilic, A. Zunger, Phys. Rev. Lett. 88, 095501 (2002)

    Article  PubMed  Google Scholar 

  34. M.A. Kozhushner, L.I. Trakhtenberg, V.L. Bodneva, T.V. Belisheva, A.C. Landerville, I.I. Oleynik, J. Phys. Chem. C 118, 11440–11444 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Council for Scientific and Technical Research (CONICET) of Argentina, and the National University of Mar del Plata (Argentina). C.M.A. acknowledges invaluable discussions with Professor Chris Blackman.

Funding

This work was partially supported by the National Council for Scientific and Technical Research (CONICET) of Argentina and the National University of Mar del Plata (Argentina).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, D.A. Mirabella, P.M. Desimone, and C.M. Aldao; investigation, D.A. Mirabella, P.M. Desimone, and C.M. Aldao, writing original draft preparation D.A. Mirabella and C.M. Aldao; writing review and editing, D.A. Mirabella, P.M. Desimone, and C.M. Aldao; funding acquisition, C.M. Aldao. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Celso M. Aldao.

Ethics declarations

Conflic of interest

The authors declare they have no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirabella, D.A., Desimone, P.M. & Aldao, C.M. On the mass action law and the power law response in tin dioxide gas sensors. J Electroceram (2024). https://doi.org/10.1007/s10832-024-00351-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10832-024-00351-3

Keywords

Navigation