Skip to main content
Log in

Revealing the influence of Nb-doping on the crystal structure and electromechanical properties of (K, Bi)(Mg, Ti, Nb)O3 ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Nb-modified lead-free ceramics (K0.48Bi0.52)(Mg0.02Ti0.98−xNbx)O3, (KBT-BMTNbx with x = 0.00 − 0.05) were synthesized by a conventional solid-state reaction route followed by furnace cooling. The effects of Nb-doping on the structural properties and electrical properties of KBT-BMTNbx ceramics have been investigated. The X-ray diffraction pattern indicates a mixed tetragonal and cubic phase for the pure KBT-BMTNbx ceramics. Therefore, a large piezoelectric actuator coefficient d33* ≈ 700 pm/V, piezoelectric sensor coefficient (d33 ≈ 133 pC/N) along with remnant polarization (Pr ≈ 17.5 µC/cm2), maximum electromechanical strain ≈ 0.35% and maximum temperature (Tm ≈ 336 ºC) were obtained for KBT-BMTNbx. However, with Nb-doping, a compositionally driven phase transformation occurred from mixed rhombohedral and tetragonal phases to cubic phase. Because of the excess Nb-doping in the KBT-BMT ceramics, the grain size suddenly decreased, as a result, the long-range ferroelectric phase was converted into a short-range relaxor phase. Hence, a low dielectric loss tanδ ≈ 0.02 was achieved at x = 0.02 composition. This superior dielectric performance is correlated to the crystal structure morphotropic phase boundary, optimum grain size (≈ 2 μm), maximum lattice distortion, and soft-ferroelectric effect induced by the donor doping. The main aim of recent research is to investigate Pr, d33, d33*, Smax, and reduced tanδ for practical applications in the real world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

On request, all information and analysis are provided.

References

  1. T. Yamada, T. Ueda, T. Kitayama, Piezoelectricity of a high-content lead zirconate titanate/polymer composite. J. Appl. Phys. 53, 4328–4332 (1982)

    Article  CAS  Google Scholar 

  2. R. Dittmer, K.G. Webber, E. Aulbach, W. Jo, X. Tan, J. Rödel, Optimal working regime of lead–zirconate–titanate for actuation applications. Sens. Actuators A: Phys. 189, 187–194 (2013)

    Article  CAS  Google Scholar 

  3. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

    Article  CAS  Google Scholar 

  4. F. Akram, R.A. Malik, T.K. Song, S. Lee, M.-H. Kim, Thermally-stable high dielectric properties of (1–x)(0.65Bi1.05FeO3–0.35BaTiO3)–xBiGaO3 piezoceramics. J. Eur. Ceram. Soc. 39, 2304–2309 (2019)

    Article  CAS  Google Scholar 

  5. B. Wang, G. Huangfu, Z. Zheng, Y. Guo, Giant Electric Field-Induced strain with High Temperature‐Stability in Textured KNN‐Based Piezoceramics for Actuator Applications, Adv. Funct. Mater. (2023) 2214643

  6. F. Akram, A. Zeb, M. Habib, A. Ullah, P. Ahmad, S. Milne, A. Karoui, N. Ali, A. Kumar, S. Lee, Piezoelectric performance of the binary K1/2Bi1/2TiO3–LiTaO3 relaxor-ferroelectric ceramics. Mater. Chem. Phys. 279, 125764 (2022)

    Article  CAS  Google Scholar 

  7. B. Jaffe, W. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, London and New York, 1971)

    Google Scholar 

  8. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature. 432, 84–87 (2004)

    Article  CAS  Google Scholar 

  9. F. Akram, A. Hussain, R.A. Malik, T.K. Song, W.-J. Kim, M.-H. Kim, Synthesis and electromechanical properties of LiTaO3-modified BiFeO3-BaTiO3 piezoceramics. Ceram. Int. 43, 209–213 (2017)

    Article  Google Scholar 

  10. M. Habib, F. Akram, P. Ahmad, F. Al-Harbi, I.U. Din, Q. Iqbal, T. Ahmed, S.A. Khan, A. Hussain, T.-K. Song, Donor multiple effects on the ferroelectric and piezoelectric performance of lead-free BiFeO3-BaTiO3 ceramics. Mater. Lett. 315, 131950 (2022)

    Article  CAS  Google Scholar 

  11. S. Zhang, R. Xia, T.R. Shrout, Lead-free piezoelectric ceramics vs. PZT? J Electroceram. 19, 251–257 (2007)

    Article  Google Scholar 

  12. F. Akram, R.A. Malik, A. Hussain, T.-K. Song, W.-J. Kim, M.-H. Kim, Temperature stable dielectric properties of lead-free BiFeO3–BaTiO3 modified with LiTaO3 ceramics. Mater. Lett. 217, 16–19 (2018)

    Article  CAS  Google Scholar 

  13. J. Wu, Perovskite lead-free piezoelectric ceramics. J. Appl. Phys. 127, 190901 (2020)

    Article  CAS  Google Scholar 

  14. F. Akram, M. Habib, J. Bae, S.A. Khan, S.Y. Choi, T. Ahmed, S. Baek, S.T.U. Din, D.-H. Lim, S.-J. Jeong, Effect of heat-treatment mechanism on structural and electromechanical properties of eco-friendly (Bi, Ba)(Fe, Ti)O3 piezoceramics. J. Mater. Sci. 58, 13198–13214 (2021)

    Article  Google Scholar 

  15. F. Akram, M. Sheeraz, A. Hussain, I.W. Kim, T.H. Kim, C.W. Ahn, Thermally-stable high energy-storage performance over a wide temperature range in relaxor-ferroelectric Bi1/2Na1/2TiO3-based ceramics. Ceram. Int. 47, 23488–23496 (2021)

    Article  CAS  Google Scholar 

  16. T. Roncal-Herrero, J. Harrington, A. Zeb, S.J. Milne, A.P. Brown, Nanoscale compositional segregation and suppression of polar coupling in a relaxor ferroelectric. Acta Mater. 158, 422–429 (2018)

    Article  CAS  Google Scholar 

  17. O. Elkechai, M. Manier, J. Mercurio, Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 (NBT-KBT) system: a structural and electrical study, Phys. Status Solidi (a) 157 (1996) 499–506

  18. J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, (K, Na) NbO3-Based Lead‐Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges, J. Am. Ceram. Soc. 96 (2013) 3677–3696

  19. T. Takenaka, H. Nagata, Y. Hiruma, Y. Yoshii, K. Matumoto, Lead-free piezoelectric ceramics based on perovskite structures. J Electroceram. 19, 259–265 (2007)

    Article  CAS  Google Scholar 

  20. H. Nagata, M. Yoshida, Y. Makiuchi, T. Takenaka, Large piezoelectric constant and high Curie temperature of lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate-bismuth potassium titanate-barium titanate near the morphotropic phase boundary. Jpn. J. Appl. Phys. 42, 7401 (2003)

    Article  CAS  Google Scholar 

  21. F. Wang, C. Ming Leung, Y. Tang, T. Wang, W. Shi, Composition induced structure evolution and large strain response in ternary Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3-SrTiO3 solid solution. J. Appl. Phys. 114, 164105 (2013)

    Article  Google Scholar 

  22. A. Zeb, S.J. Milne, Large electromechanical strain in lead-free Binary System K0.5Bi0.5TiO3-Bi(Mg0.5Ti0.5)O3. J. Am. Ceram. Soc. 97, 2413–2415 (2014)

    Article  CAS  Google Scholar 

  23. T. Takenaka, K.-i.M.K.-i., K.S.K. Maruyama, Sakata, (Bi1/2Na1/2) TiO3-BaTiO3 system for lead-free piezoelectric ceramics, Japanese journal of applied physics 30 (1991) 2236

  24. B.-J. Chu, D.-R. Chen, G.-R. Li, Q.-R. Yin, Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics. J. Eur. Ceram. Soc. 22, 2115–2121 (2002)

    Article  CAS  Google Scholar 

  25. J. Rödel, W. Jo, K.T. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009)

    Article  Google Scholar 

  26. C. Ma, X. Tan, Phase diagram of unpoled lead-free (1 – x)(Bi1/2Na1/2) TiO3–xBaTiO3 ceramics. Solid State Commun. 150, 1497–1500 (2010)

    Article  CAS  Google Scholar 

  27. A. Zeb, S.J. Milne, Large electromechanical strain in lead-free Binary System K0.5Bi0.5TiO3‐Bi (Mg0.5 Ti0.5)O3. J. Am. Ceram. Soc. 97, 2413–2415 (2014)

    Article  CAS  Google Scholar 

  28. Y. Liu, Y. Chang, F. Li, B. Yang, Y. Sun, J. Wu, S. Zhang, R. Wang, W. Cao, Exceptionally high piezoelectric coefficient and low strain hysteresis in grain-oriented (ba, ca)(Ti, Zr) O3 through integrating crystallographic texture and domain engineering. ACS Appl. Mater. Interfaces. 9, 29863–29871 (2017)

    Article  CAS  Google Scholar 

  29. K. Wang, F.Z. Yao, W. Jo, D. Gobeljic, V.V. Shvartsman, D.C. Lupascu, J.F. Li, J. Rödel, Temperature-insensitive (K, na) NbO3‐based lead‐free piezoactuator ceramics. Adv. Funct. Mater. 23, 4079–4086 (2013)

    Article  CAS  Google Scholar 

  30. F. Akram, J. Kim, S.A. Khan, A. Zeb, H.G. Yeo, Y.S. Sung, T.K. Song, M.-H. Kim, S. Lee, Less temperature-dependent high dielectric and energy-storage properties of eco-friendly BiFeO3–BaTiO3-based ceramics. J. Alloys Compd. 818, 152878 (2020)

    Article  CAS  Google Scholar 

  31. A. Zeb, D.A. Hall, Z. Aslam, J. Forrester, J.-F. Li, Y. Li, C.C. Tang, G. Wang, F. Zhu, S.J. Milne, Structure-property relationships in the lead-free piezoceramic system K0.5Bi0.5TiO3-BiMg0.5Ti0.5O3. Acta Mater. 168, 100–108 (2019)

    Article  CAS  Google Scholar 

  32. T. Degen, M. Sadki, E. Bron, U. König, G. Nénert, The highscore suite. Powder Diffr. 29, S13–S18 (2014)

    Article  CAS  Google Scholar 

  33. J. Dorrian, R. Newnham, D. Smith, M. Kay, Crystal structure of Bi4Ti3O12, Ferroelectrics 3 (1972) 17–27

  34. A.D. Rae, J.G. Thompson, R. Withers, A.C. Willis, Structure refinement of commensurately modulated bismuth titanate, Bi4Ti3O12. Acta Crystallogr., Sect. B: Struct. Sci. 46, 474–487 (1990)

    Article  Google Scholar 

  35. X. Zhang, Y. Sui, X. Wang, J. Tang, W. Su, Influence of diamagnetic pb doping on the crystal structure and multiferroic properties of the BiFeO3 perovskite. J. Appl. Phys. 105, 07D918 (2009)

    Article  Google Scholar 

  36. B. Hu, M. Zhu, J. Guo, Y. Wang, M. Zheng, Y. Hou, Origin of relaxor behavior in K1/2Bi1/2TiO3–Bi(Mg1/2Ti1/2)O3 investigated by electrical impedance spectroscopy. J. Am. Ceram. Soc. 99, 1637–1644 (2016)

    Article  CAS  Google Scholar 

  37. Q. Fan, C. Zhou, W. Zeng, L. Cao, C. Yuan, G. Rao, X. Li, Normal-to-relaxor ferroelectric phase transition and electrical properties in Nb-modified 0.72BiFeO3-0.28BaTiO3 ceramics. J Electroceram. 36, 1–7 (2016)

    Article  CAS  Google Scholar 

  38. P. Sun, H. Wang, X. Bu, Z. Chen, J. Du, L. Li, F. Wen, W. Bai, P. Zheng, W. Wu, Enhanced energy storage performance in bismuth layer-structured BaBi2Me2O9 (me = nb and Ta) relaxor ferroelectric ceramics. Ceram. Int. 46, 15907–15914 (2020)

    Article  CAS  Google Scholar 

  39. K. Wang, A. Hussain, W. Jo, J. Rödel, Temperature-dependent Properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2) TiO3–SrTiO3 lead‐free Piezoceramics. J. Am. Ceram. Soc. 95, 2241–2247 (2012)

    Article  CAS  Google Scholar 

  40. F. Akram, R.A. Malik, S.A. Khan, A. Hussain, S. Lee, M.-H. Lee, C.H. In, T.-K. Song, W.-J. Kim, Y.S. Sung, Electromechanical properties of ternary BiFeO3 – 0.35BaTiO3–BiGaO3 piezoelectric ceramics. J Electroceram. 41, 93–98 (2018)

    Article  CAS  Google Scholar 

  41. J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, (K,na)NbO3-based lead‐free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 96, 3677–3696 (2013)

    Article  CAS  Google Scholar 

  42. A. Thorvaldsen, The intercept method—2. Determination of spatial grain size. Acta Mater. 45, 595–600 (1997)

    Article  CAS  Google Scholar 

  43. H. Abrams, Grain size measurement by the intercept method. Metallography. 4, 59–78 (1971)

    Article  Google Scholar 

  44. J. Wang, Y. Yu, S. Li, L. Guo, E. Wang, Y. Cao, Doping behavior of Zr4+ ions in Zr4+-doped TiO2 nanoparticles. J. Phys. Chem. C 117, 27120–27126 (2013)

    Article  CAS  Google Scholar 

  45. J. Hao, W. Bai, W. Li, J. Zhai, Correlation between the microstructure and electrical properties in high-performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead‐free piezoelectric ceramics. J. Am. Ceram. Soc. 95, 1998–2006 (2012)

    Article  CAS  Google Scholar 

  46. Z. Hanani, D. Mezzane, M. Amjoud, S. Fourcade, A.G. Razumnaya, I.A. Luk’Yanchuk, M. Gouné, Enhancement of dielectric properties of lead-free BCZT ferroelectric ceramics by grain size engineering. Superlattices Microstruct. 127, 109–117 (2019)

    Article  CAS  Google Scholar 

  47. M. Kireš, Archimedes’ principle in action. Phys. Educ. 42, 484 (2007)

    Article  Google Scholar 

  48. R. Benenson, Direct-reading archimedes’ principle apparatus. Phys. Teacher. 13, 366–366 (1975)

    Article  Google Scholar 

  49. D. Viehland, M. Wuttig, L. Cross, The glassy behavior of relaxor ferroelectrics. Ferroelectrics. 120, 71–77 (1991)

    Article  CAS  Google Scholar 

  50. F. Craciun, C. Galassi, R. Birjega, Electric-field-induced and spontaneous relaxor-ferroelectric phase transitions in (Na1/2Bi1/2)1–xBaxTiO3. J. Appl. Phys. 112, 124106 (2012)

    Article  Google Scholar 

  51. T.R. Shrout, J. Fielding, Relaxor ferroelectric materials, IEEE Symposium on Ultrasonics, IEEE, 1990, pp. 711–720

  52. M. Otonicar, A. Reichmann, K. Reichmann, Electric field-induced changes of domain structure and properties in La-doped PZT—From ferroelectrics towards relaxors. J. Eur. Ceram. Soc. 36, 2495–2504 (2016)

    Article  CAS  Google Scholar 

  53. X. Chou, J. Zhai, H. Jiang, X. Yao, Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics. J. Appl. Phys. 102, 084106 (2007)

    Article  Google Scholar 

  54. F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, C. Li, Z. Xu, Q. Huang, X. Liao, L.-Q. Chen, Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17, 349 (2018)

    Article  CAS  Google Scholar 

  55. M. Morozov, D. Damjanovic, Charge migration in Pb(Zr, Ti)O3 ceramics and its relation to ageing, hardening, and softening. J. Appl. Phys. 107, 034106 (2010)

    Article  Google Scholar 

  56. A. Tian, R. Zuo, H. Qi, M. Shi, Large energy-storage density in transition-metal oxide modified NaNbO3–Bi(Mg0.5Ti0.5)O3 lead-free ceramics through regulating the antiferroelectric phase structure. J. Mater. Chem. A 8, 8352–8359 (2020)

    Article  CAS  Google Scholar 

  57. F. Yang, P. Wu, D.C. Sinclair, Suppression of electrical conductivity and switching of conduction mechanisms in ‘stoichiometric’(Na0.5Bi0.5TiO3)1–x(BiAlO3)x (0 ≤ x ≤ 0.08) solid solutions. J. Mater. Chem. C 5, 7243–7252 (2017)

    Article  CAS  Google Scholar 

  58. Z. Yu, C. Ang, R. Guo, A. Bhalla, Ferroelectric-relaxor behavior of ba(Ti0.7Zr0.3)O3 ceramics. J. Appl. Phys. 92, 2655–2657 (2002)

    Article  CAS  Google Scholar 

  59. K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics. 44, 55–61 (1982)

    Article  CAS  Google Scholar 

  60. T. Ahmed, S.A. Khan, M. Kim, F. Akram, H.W. Park, A. Hussain, I. Qazi, D.H. Lim, S.-J. Jeong, T.K. Song, Effective A-site modulation and crystal phase evolution for high ferro/piezoelectric performance in ABO3 compounds: Yttrium-doped BiFeO3-BaTiO3. J. Alloys Compd. 933, 167709 (2023)

    Article  CAS  Google Scholar 

  61. D. Wang, G. Wang, S. Murakami, Z. Fan, A. Feteira, D. Zhou, S. Sun, Q. Zhao, I.M. Reaney, BiFeO3-BaTiO3: a new generation of lead-free electroceramics. J. Adv. Dielectr. 8, 1830004 (2018)

    Article  CAS  Google Scholar 

  62. H. Zhang, T. Wei, Q. Zhang, W. Ma, P. Fan, D. Salamon, S.-T. Zhang, B. Nan, H. Tan, Z.-G. Ye, A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J. Mater. Chem. C 8, 16648–16667 (2020)

    Article  CAS  Google Scholar 

  63. N. Liu, R. Liang, Z. Zhou, X. Dong, Designing lead-free bismuth ferrite-based ceramics learning from relaxor ferroelectric behavior for simultaneous high energy density and efficiency under low electric field. J. Mater. Chem. C 6, 10211–10217 (2018)

    Article  CAS  Google Scholar 

  64. V.V. Shvartsman, D.C. Lupascu, Lead-free relaxor ferroelectrics. J. Am. Ceram. Soc. 95, 1–26 (2012)

    Article  CAS  Google Scholar 

  65. B. Qu, H. Du, Z. Yang, Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability. J. Mater. Chem. C 4, 1795–1803 (2016)

    Article  CAS  Google Scholar 

  66. Y. Hiruma, K. Yoshii, H. Nagata, T. Takenaka, Phase transition temperature and electrical properties of (Bi1∕ 2Na1∕ 2)TiO3–(Bi1∕ 2A1∕ 2)TiO3 (A = Li and K) lead-free ferroelectric ceramics. J. Appl. Phys. 103, 084121 (2008)

    Article  Google Scholar 

Download references

Funding

Dr. Aurang Zeb thanks the Higher Education Commission of Pakistan and Islamia College Peshawar (Chartered University) for financial support. This was supported by the Higher Education Commission of Pakistan(HEC) grant funded by the National Research Program for Universities (NRPU) project No 10928. In addition, the National Science Foundation grant DMR-2122147 for the NSF-PREM Emergent Interface Materials Program between Clark Atlanta University, Spelman College, and Cornell University-PARADIM is also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Aurang Zeb, Dr. Fazli Akram, Dr. Muhammad Habib, Dr. S.J. Milne, Dr. Amir Ullah, and Dr. Chang Won Ahn performed the experiment, analyzed the data, and prepare the first draft of the manuscript. Dr. Nasir Ali, Dr. Shahid Ali, Dr. Fayaz Hussain, Ihsan Ullah, and Qamar Iqbal helped with electromechanical properties measurements and their analysis. We express our gratitude to Dr. Muhammad Sheeraz, Dr. Conrad Ingram, Dr. Adnan Younis, and Dr. P.T. Tho for their valuable contributions to the revised manuscript. In addition, thanks to Dr. Aurang Zeb for sponsoring (HEC, Pakistan) and supervising this research work.

Corresponding authors

Correspondence to Aurang Zeb, Fazli Akram or Chang Won Ahn.

Ethics declarations

Informed consent

Not applicable.

Statement regarding research involving human participants and/or animals

This article does not contain any studies with human or animal subjects.

Competing Interests

There are no conflicts of interest that the authors are required to report.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeb, A., Akram, F., Habib, M. et al. Revealing the influence of Nb-doping on the crystal structure and electromechanical properties of (K, Bi)(Mg, Ti, Nb)O3 ceramics. J Electroceram 51, 122–132 (2023). https://doi.org/10.1007/s10832-023-00321-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-023-00321-1

Keywords

Navigation