Skip to main content
Log in

Effect of poling on piezoelectric and ferroelectric properties of Bi0.5Na0.5Ti1-xZrxO3 ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Lead-free bismuth sodium titanate zirconate powders with the stoichiometric formula of Bi0.5Na0.5Ti1 − xZrxO3 (where x = 0, 0.20, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80 mol fraction) were prepared by solid state reaction method. Based on XRD pattern from phase analysis of Bi0.5Na0.5Ti1-xZrxO3 powders, the quantitative profile fitting analysis was carried out. Phase characterization of the powders showed that at x = 0–0.65 mol fraction, only rhombohedral phase existed. With x = 0.68–0.75 mol fraction, the coexistence of rhombohedral and orthorhombic phases occurred. Orthorhombic phase completely formed with x = 0.80 mol fraction. Small addition of Zr into BNT caused dielectric constant to increase. High Zr concentration induced more unit cell distortion which caused the degradation of dielectric properties. Poling also had some effects on ferroelectric behavior of BNTZ ceramics particularly in the rhombohedral phase region in terms of improved breakdown strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric ceramics (Academic, London, 1971)

    Google Scholar 

  2. A.J. Moulson, J.M. Herbert, Electroceramics: Materials, properties, applications (Wiley Sons, Chichester, 2003)

    Book  Google Scholar 

  3. G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82(4), 797–818 (1999)

    Article  Google Scholar 

  4. T.M. Kamel, F.X.N.M. Kools, G. de With, J. Eur. Ceram. Soc. 22, 2471 (2007)

    Article  Google Scholar 

  5. T.M. Kamel, G. de With, J. Eur. Ceram. Soc. 28, 1827 (2008)

    Article  Google Scholar 

  6. N. Setter, Piezoelectric materials in devices (Ceramic Laboratory, EPFL, 2003)

    Google Scholar 

  7. P. Zheng, J.L. Zhang, Y.Q. Tan, C.L. Wang, Acta Mater. 60, 5022 (2012)

    Article  Google Scholar 

  8. S. Su, R. Zuo, K.Z. Xu, X. Wang, L Li, J. Am. Ceram. Soc. 94, 3192 (2011)

    Article  Google Scholar 

  9. D.Q. Xiao, D.M. Lin, J.G. Zhu, P. Yu, J. Electroceram. 21, 34 (2008)

    Article  Google Scholar 

  10. H. Du, F. Tang, F. Luo, W. Zhou, S. Qu, Z. Pei, Mater. Sci. Eng. B. 137, 175 (2007)

    Article  Google Scholar 

  11. J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, J. Am. Ceram. Soc. 92, 1153 (2009)

    Article  Google Scholar 

  12. P.K. Panda, J. Mater. Sci. 44, 5049 (2009)

    Article  Google Scholar 

  13. T.R. Shrout, S.J. Zhang, J. Electroceram. 19, 111 (2007)

    Article  Google Scholar 

  14. D. Damjanovic, N. Klein, J. Li, V. Porokhonskyy, Funct. Mater. 3, 5 (2010)

    Article  Google Scholar 

  15. T. Takenaka, K. Sakata, K. Toda, Ferroelectr. 169, 317 (1995)

    Article  Google Scholar 

  16. G.A. Smolenskii, V.A. Isupov, A.I. Angranovskaya, N.N. Krainik, Sov. Phys. Solid State 2, 2651 (1961)

    Google Scholar 

  17. W. Kraus, G. Nolze, J. Appl. Cryst. 29, 301 (1996)

    Article  Google Scholar 

  18. R.D. Shannon, Acta Cryst. A32, 751 (1976)

    Article  Google Scholar 

  19. A. Dixit, S.B. Majumder, P.S. Dobal, R.S. Katiyar, A.S. Bhalla, Thin Solid Films 447, 284 (2004)

    Article  Google Scholar 

  20. R. Pantou, C. Dubourdieu, F. Weiss, J. Kreisel, G. Köbernik, W. Haessler, Mater. Sci. Semicond. Process. 5, 237 (2003)

    Article  Google Scholar 

  21. G.O. Jones, P.A. Thomas, Acta Crystallogr. Sect. B: Struct. Sci. B58, 168 (2002)

    Article  Google Scholar 

  22. K. Lily, K. Kumari, K.L. Prasad, J. Yadav, Mater. Sci. 42, 6252 (2007)

    Article  Google Scholar 

  23. P. Jaiban, A. Rachakom, S. Buntham, S. Jiansirisomboon, Mater. Sci. Forum 695, 49 (2001)

    Article  Google Scholar 

  24. A. Rachakom, S. Jiansirisomboon, A. Watcharapasorn, Ceram. Int. 39, S139 (2013)

    Article  Google Scholar 

  25. B.D. Cullity, Elements of X-ray diffraction (Addison-Wesley publishing company, Indiana, 1956)

    Google Scholar 

  26. P. Zavalij, Fundamentals of powder diffraction and structure characterization of materials, IA, (2005)

  27. L. Li, X.M. Chen, Mater. Sci. Eng. B 108, 200 (2004)

    Article  Google Scholar 

  28. P. Zheng, K.X. Song, H.B. Qin, L. Zheng, L.M. Zheng, Curr. Appl. Phys. 13, 1064 (2013)

    Article  Google Scholar 

  29. V. Pal, R.K. Dwivwdi, O.P. Thakur, Curr. Appl. Phys. 14, 99 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Thailand Research Fund (TRF) and the National Research University Project under Thailand’s Office of the Higher Education Commission (OHEC). The Faculty of Science and the Graduate School, Chiang Mai University is also acknowledged. Ms. Ampika Rachakom would like to thank the Commission on Higher Education for supporting by grant fund under the program Strategic Scholarships for Frontier Research Network for the Ph.D. Program Thai Doctoral degree for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Watcharapasorn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rachakom, A., Jiansirisomboon, S. & Watcharapasorn, A. Effect of poling on piezoelectric and ferroelectric properties of Bi0.5Na0.5Ti1-xZrxO3 ceramics. J Electroceram 33, 105–110 (2014). https://doi.org/10.1007/s10832-014-9939-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-014-9939-8

Keywords

Navigation