Skip to main content

Advertisement

Log in

Electrochemical strain microscopy of local electrochemical processes in solids: mechanism of imaging and spectroscopy in the diffusion limit

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Changes in ionic concentration and electrochemical processes in solids are invariably associated with changes in molar volume. Correspondingly, materials with mobile ions develop strain in response to applied electric bias. This electromechanical coupling mediated by mobile ions lays the foundation for the electrochemical strain microscopy (ESM) of energy storage and conversion materials. Here, we analyze the imaging and spectroscopic mechanism in ESM in the diffusion limit and discuss the similarities between ESM and macroscopic current-based electrochemical measurements. The theoretical challenges in ESM are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. F.S. Baumann, J. Fleig, H.U. Habermeier, J. Maier, Solid State Ionics 177(11–12), 1071–1081 (2006)

    Article  Google Scholar 

  2. V. Brichzin, J. Fleig, H.U. Habermeier, G. Cristiani, J. Maier, Solid State Ionics 152, 499–507 (2002)

    Article  Google Scholar 

  3. G.J. la O, S.J. Ahn, E. Crumlin, Y. Orikasa, M.D. Biegalski, H.M. Christen, Y. Shao-Horn, Angew. Chem. Int. Ed. 49(31), 5344–5347 (2010)

    Google Scholar 

  4. M.M. Hantel, V. Presser, J.K. McDonough, G. Feng, P.T. Cummings, Y. Gogotsi, R. Kotz, J. Electrochem. Soc. 159(11), A1897–A1903 (2012)

    Article  Google Scholar 

  5. M. Hahn, H. Buqa, P.W. Ruch, D. Goers, M.E. Spahr, J. Ufheil, P. Novak, R. Kotz, Electrochem. Solid-State Lett. 11(9), A151–A154 (2008)

    Article  Google Scholar 

  6. S. Park, T. Kim, S.M. Oh, Electrochem. Solid-State Lett. 10(6), A142–A145 (2007)

    Article  Google Scholar 

  7. M. Hahn, O. Barbieri, R. Gallay, R. Kotz, Carbon 44(12), 2523–2533 (2006)

    Article  Google Scholar 

  8. M. Winter, G.H. Wrodnigg, J.O. Besenhard, W. Biberacher, P. Novak, J. Electrochem. Soc. 147(7), 2427–2431 (2000)

    Article  Google Scholar 

  9. S.B. Adler, J. Am. Ceram. Soc. 84(9), 2117–2119 (2001)

    Article  Google Scholar 

  10. S.R. Bishop, K.L. Duncan, E.D. Wachsman, J. Electrochem. Soc. 156(10), B1242–B1248 (2009)

    Article  Google Scholar 

  11. Y. Tian, A. Timmons, J.R. Dahn, J. Electrochem. Soc. 156(3), A187–A191 (2009)

    Article  Google Scholar 

  12. S. Jesse, N. Balke, E. Eliseev, A. Tselev, N.J. Dudney, A.N. Morozovska, S.V. Kalinin, ACS Nano 5(12), 9682–9695 (2011)

    Article  Google Scholar 

  13. N. Balke, S. Jesse, Y. Kim, L. Adamczyk, A. Tselev, I.N. Ivanov, N.J. Dudney, S.V. Kalinin, Nano Lett. 10(9), 3420–3425 (2010)

    Article  Google Scholar 

  14. A.N. Morozovska, E.A. Eliseev, S.V. Kalinin, Appl. Phys. Lett. 96(22) (2010)

  15. A.N. Morozovska, E.A. Eliseev, N. Balke, S.V. Kalinin, J. Appl. Phys. 108(5), 053712 (2010)

    Article  Google Scholar 

  16. A. Kumar, F. Ciucci, A.N. Morozovska, S.V. Kalinin, S. Jesse, Nat. Chem. 3(9), 707–713 (2011)

    Article  Google Scholar 

  17. S. Guo, S. Jesse, S. Kalnaus, N. Balke, C. Daniel, S.V. Kalinin, J. Electrochem. Soc. 158(8), A982–A990 (2011)

    Article  Google Scholar 

  18. N. Balke, S. Jesse, Y. Kim, L. Adamczyk, I.N. Ivanov, N.J. Dudney, S.V. Kalinin, ACS Nano 4(12), 7349–7357 (2010)

    Article  Google Scholar 

  19. N. Balke, S. Jesse, A.N. Morozovska, E. Eliseev, D.W. Chung, Y. Kim, L. Adamczyk, R.E. Garcia, N. Dudney, S.V. Kalinin, Nat. Nanotechnol. 5(10), 749–754 (2010)

    Article  Google Scholar 

  20. S. Jesse, A. Kumar, T.M. Arruda, Y. Kim, S.V. Kalinin, F. Ciucci, MRS Bull. 37(7), 651–658 (2012)

    Article  Google Scholar 

  21. T.M. Arruda, A. Kumar, S.V. Kalinin, S. Jesse, Nano Lett. 11(10), 4161–4167 (2011)

    Article  Google Scholar 

  22. T.M. Arruda, A. Kumar, S.V. Kalinin, S. Jesse, Nanotechnology 23(32), 325402 (2012)

    Article  Google Scholar 

  23. S. Jesse, S.V. Kalinin, J. Phys. D. Appl. Phys. 44(46), 464006 (2011)

    Article  Google Scholar 

  24. S. Jesse, S.V. Kalinin, R. Proksch, A.P. Baddorf, B.J. Rodriguez, Nanotechnology 18(43), 435503 (2007)

    Article  Google Scholar 

  25. Y.T. Cheng, M.W. Verbrugge, J. Power Sources 190(2), 453–460 (2009)

    Article  Google Scholar 

  26. X.C. Zhang, A.M. Sastry, W. Shyy, J. Electrochem. Soc. 155(7), A542–A552 (2008)

    Article  Google Scholar 

  27. Y. Kim, A.S. Disa, T.E. Babakol, J.D. Brock, Appl. Phys. Lett. 96(25) (2010)

  28. D.A. Freedman, D. Roundy, T.A. Arias, Phys. Rev. B 80(6) (2009)

  29. A.N. Morozovska, E.A. Eliseev, S.V. Kalinin, J. Appl. Phys. 102(7) (2007)

  30. A.N. Morozovska, S.V. Svechnikov, E.A. Eliseev, S.V. Kalinin, Phys. Rev. B 76(5) (2007)

  31. A.N. Morozovska, E.A. Eliseev, S.V. Kalinin, J. Appl. Phys. 111(1) (2012)

  32. S. Jesse, A.P. Baddorf, S.V. Kalinin, Nanotechnology 17(6), 1615–1628 (2006)

    Article  Google Scholar 

  33. C. Harnagea, M. Alexe, D. Hesse, A. Pignolet, Appl. Phys. Lett. 83(2), 338–340 (2003)

    Article  Google Scholar 

  34. B.D. Huey, C. Ramanujan, M. Bobji, J. Blendell, G. White, R. Szoszkiewicz, A. Kulik, J. Electroceram. 13(1–3), 287–291 (2004)

    Article  Google Scholar 

  35. A.N. Morozovska, E.A. Eliseev, A.K. Tagantsev, S.L. Bravina, L.Q. Chen, S.V. Kalinin, Phys. Rev. B 83(19) (2011)

  36. A.N. Morozovska, E.A. Eliseev, G.S. Svechnikov, S.V. Kalinin, Phys. Rev. B 84(4), 045402 (2011)

    Article  Google Scholar 

  37. V.S. Mashkevich, K.B. Tolpygo, Sov. Phys. JETP-USSR 5(3), 435–439 (1957)

    Google Scholar 

  38. S.M. Kogan, Sov. Phys.-Solid State 5(10), 2069–2070 (1964)

    Google Scholar 

  39. J.W. Hong, D. Vanderbilt, Phys. Rev. B 84(18), 180101 (2011)

    Article  Google Scholar 

  40. A.K. Tagantsev, Phys. Rev. B 34(8), 5883–5889 (1986)

    Article  Google Scholar 

  41. A.K. Tagantsev, V. Meunier, P. Sharma, MRS Bull. 34(9), 643–647 (2009)

    Article  Google Scholar 

  42. P. Zubko, G. Catalan, A. Buckley, P.R.L. Welche, J.F. Scott, Phys. Rev. Lett. 99(16), 167601 (2007)

    Article  Google Scholar 

  43. X.Y. Chen, J.S. Yu, S.B. Adler, Chem. Mater. 17(17), 4537–4546 (2005)

    Article  Google Scholar 

  44. E.V. Tsipis, E.N. Naumovich, M.V. Patrakeev, A.A. Yaremchenko, I.P. Marozau, A.V. Kovalevsky, J.C. Waerenborgh, V.V. Kharton, Solid State Ion. 192(1), 42–48 (2011)

    Article  Google Scholar 

  45. A.N. Petrov, V.A. Cherepanov, A.Y. Zuev, J. Solid State Electrochem. 10(8), 517–537 (2006)

    Article  Google Scholar 

  46. J.F. Mitchell, D.N. Argyriou, C.D. Potter, D.G. Hinks, J.D. Jorgensen, S.D. Bader, Phys. Rev. B 54(9), 6172–6183 (1996)

    Article  Google Scholar 

  47. N.D. Mermin, N.W. Ashcroft, Solid State Physics (Holt, Rinehart and Winston, New York, 1976)

    Google Scholar 

  48. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley-Interscience, New York, 1981)

    Google Scholar 

  49. A.I. Anselm, Introduction to Semiconductor Theory (Prentice-Hall, Englewood Cliffs, 1981)

    Google Scholar 

  50. A.N. Morozovska, E.A. Eliseev, S.L. Bravina, F. Ciucci, G.S. Svechnikov, L.Q. Chen, S.V. Kalinin, J. Appl. Phys. 111(1) (2012)

  51. B.W. Sheldon, V.B. Shenoy, Phys. Rev. Lett. 106(21), 216104 (2011)

    Article  Google Scholar 

  52. C.W. Bark, P. Sharma, Y. Wang, S.H. Baek, S. Lee, S. Ryu, C.M. Folkman, T.R. Paudel, A. Kumar, S.V. Kalinin, A. Sokolov, E.Y. Tsymbal, M.S. Rzchowski, A. Gruverman, C.B. Eom, Nano Lett. 12(4), 1765–1771 (2012)

    Article  Google Scholar 

  53. A. Kumar, T.M. Arruda, Y. Kim, I.N. Ivanov, S. Jesse, C.W. Bark, N.C. Bristowe, E. Artacho, P.B. Littlewood, C.B. Eom, S.V. Kalinin, ACS Nano 6(5), 3841–3852 (2012)

    Article  Google Scholar 

  54. F. Bi, D.F. Bogorin, C. Cen, C.W. Bark, J.W. Park, C.B. Eom, J. Levy, Appl. Phys. Lett. 97(17) (2010)

  55. S.V. Kalinin, C.Y. Johnson, D.A. Bonnell, J. Appl. Phys. 91(6), 3816–3823 (2002)

    Article  Google Scholar 

  56. S.V. Kalinin, D.A. Bonnell, Nano Lett. 4(4), 555–560 (2004)

    Article  Google Scholar 

  57. S. Cunningham, I.A. Larkin, J.H. Davis, Appl. Phys. Lett. 73(1), 123–125 (1998)

    Article  Google Scholar 

  58. D.Y. He, L.J. Qiao, A.A. Volinsky, J. Appl. Phys. 110(7), 074104 (2011)

    Article  Google Scholar 

  59. J.C. Li, X.C. Xiao, F.Q. Yang, M.W. Verbrugge, Y.T. Cheng, J. Phys. Chem. C 116(1), 1472–1478 (2012)

    Article  Google Scholar 

  60. C. Brissot, M. Rosso, J.N. Chazalviel, S. Lascaud, J. Electrochem. Soc. 146(12), 4393–4400 (1999)

    Article  Google Scholar 

  61. H.J. Butt, B. Cappella, M. Kappl, Surf. Sci. Rep. 59(1–6), 1–152 (2005)

    Article  Google Scholar 

  62. R.J. Cannara, M.J. Brukman, R.W. Carpick, Rev. Sci. Instrum. 76(5) (2005)

  63. D.F. Ogletree, R.W. Carpick, M. Salmeron, Rev. Sci. Instrum. 67(9), 3298–3306 (1996)

    Article  Google Scholar 

  64. M.Z. Bazant, K.T. Chu, B.J. Bayly, SIAM J. Appl. Math. 65(5), 1463–1484 (2005)

    Article  Google Scholar 

  65. M.Z. Bazant, K. Thornton, A. Ajdari, Phys. Rev. E 70(2), 021506 (2004)

    Article  Google Scholar 

  66. Y. Gil, O.M. Umurhan, I. Riess, Solid State Ion. 178(1–2), 1–12 (2007)

    Article  Google Scholar 

  67. I. Riess, J. Electroceram. 17(2–4), 247–253 (2006)

    Article  Google Scholar 

  68. Z. Rosenstock, I. Feldman, Y. Gil, I. Riess, J. Electroceram. 14(3), 205–212 (2005)

    Article  Google Scholar 

  69. Y. Sun, S.E. Thompson, T. Nishida, J. Appl. Phys. 101(10), 104503 (2007)

    Article  Google Scholar 

  70. H.F. Tian, J.R. Sun, H.B. Lu, K.J. Jin, H.X. Yang, H.C. Yu, J.Q. Li, Appl. Phys. Lett. 87(16), 164102 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported as part of the Fluid Interface, Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. A.N.M. gratefully acknowledges multiple discussions and critical remarks from Eugene Eliseev (NAS Ukraine). The authors are grateful to A. Belianinov (ORNL) for valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei V. Kalinin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinin, S.V., Morozovska, A.N. Electrochemical strain microscopy of local electrochemical processes in solids: mechanism of imaging and spectroscopy in the diffusion limit. J Electroceram 32, 51–59 (2014). https://doi.org/10.1007/s10832-013-9819-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-013-9819-7

Keywords

Navigation