Skip to main content
Log in

Application of GDC-YDB bilayer and LSM-YDB cathode for intermediate temperature solid oxide fuel cells

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Yttria-doped bismuth (YDB) and gadolinia-doped ceria (GDC) are investigated as a bilayer electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). LSM-YDB is used as a cathode material in order to improve the poor ionic conduction of LSM and the compatibility with the YDB electrolyte. The performance of the bilayer cell was measured under humidified H2 (3 % H2O) atmosphere and an operating temperature between 500 °C and 650 °C. The polarization resistance and ohmic resistance of the GDC-YDB bilayer cell were 0.189 Ωcm2 and 0.227 Ωcm2 at 650 °C, respectively. The bilayer cell showed 0.527 Wcm−2 in the maximum power density at 650 °C, which is about two times higher than the single-layer cell of 0.21 Wcm−2. The OCV of the bilayer cell was 0.89 V at 650 °C, suggesting that the electronic conduction caused by the reduction of ceria was successfully suppressed by the YDB layer. The introduction of an YDB-GDC bilayer cell with LSM-YDB cathode thus appears to be a promising method for improving the performance of GDC-based SOFCs and reducing operating temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Zuo, M. Liu and M. Liu, Sol–gel processing for Conventional and Alternative energy Chapter 2 (2012)

  2. J.M. Ralph, A.C. Schoeler, M. Krumpelt, J. Mater. Sci. 36, 1161–1172 (2001)

    Article  CAS  Google Scholar 

  3. Y. Leng, S.H. Chan, Q. Liu, J. Hydrog. Energy 33, 3808–3817 (2008)

    Article  CAS  Google Scholar 

  4. J. Berezovsky, H.K. Liu, S.X. Dou, J. Solid State Ionics 66, 201–206 (1993)

    Article  CAS  Google Scholar 

  5. A.M. Azard, S. Larose, S.A. Akbar, J. Mater. Sci. 29, 4135–4151 (1994)

    Article  Google Scholar 

  6. N.M. Sammes, G.A. Tompsett, H. Nafe, F. Aldinger, J. Eur. Ceram. Soc. 19, 1801–1826 (1999)

    Article  CAS  Google Scholar 

  7. O.A. Marina, C. Bagger, S. Primdahl, M. Mogensen, Solid State Ionics 123, 199–208 (1999)

    Article  CAS  Google Scholar 

  8. E.D. Wachsman, P. Jayaweera, N. Jiang, D.M. Lowe and B.G. Pound, Journal of the Electrochemical Society No.1 144 (1997)

  9. H. Yahiro, Y. Baba, K. Eguchi, H. Arai, J. Electrochem. Soc. 135(8), 2077–2080 (1998)

    Article  Google Scholar 

  10. E.D. Wachsman, K.T. Lee, Science 334, 935 (2011)

    Article  CAS  Google Scholar 

  11. J.S. Ahn, M.A. Camaratta, D. Pergolesi, K.T. Lee, H. Yoon, B.W. Lee, D.W. Jung, E. Traversa, E.D. Wachsman, J. Electrochem. Soc. 157, B376–B382 (2010)

    Article  CAS  Google Scholar 

  12. Y.J. Leng, S.H. Chan, J. Electrochem. Solid-State Lett. 9(2), A56–A59 (2006)

    Article  CAS  Google Scholar 

  13. V.V. Kharton, E.N. Naumovich, V.V. Samokhval, Solid State Ionics 99, 269–280 (1997)

    Article  CAS  Google Scholar 

  14. L. Zhang, C. Xia, F. Zhao, F. Chen, J. Mater. Res. Bull. 45, 603–608 (2010)

    Article  Google Scholar 

  15. J. Zhiyi, C. Xia, F. Zhao, F. Chen, Electrochem. Solid-State Lett. 6, 12 (2009)

    Google Scholar 

  16. Z. Jiang, Z. Lei, B. Ding, C. Xia, F. Zhao, F. Chen, J. Hydrog. Energy 35, 8322–8330 (2010)

    Article  CAS  Google Scholar 

  17. Z. Jiang, L. Zhang, K. Feng, C. Xia, J. Power Sources 185, 40–48 (2008)

    Article  CAS  Google Scholar 

  18. Y. Dong, S. Hampshire, J.-e. Zhou, G. Meng, J. Hydrog. Energy 36, 5054–5066 (2011)

    Article  CAS  Google Scholar 

  19. Y. Shen, A. Joshi, M. Liu, K. Krist, Solid State Ionics 72, 209–217 (1994)

    Article  CAS  Google Scholar 

  20. V.V. Belousov, Oxid. Met. 38, 289–298 (1992)

    Article  CAS  Google Scholar 

  21. C. Fu, S.H. Chan, Q. Liu, X. Ge, G. Pasciak, J. Hydrog. Energy 35, 301–307 (2010)

    Article  CAS  Google Scholar 

  22. K. Chen, Z. Ru, N. Ai, X. Chen, J. Hoo, X. Huang, W. Su, J. Power Sources 167, 84–89 (2007)

    Article  CAS  Google Scholar 

  23. J. Nielsen, M. Mogensen, Solid State Ionics 189, 74–81 (2011)

    Article  CAS  Google Scholar 

  24. J. Chen, F. Liang, L. Liu, S. Jiang, B. Chia, J. Pu, J. Li, J. Power Sources 183, 586–589 (2008)

    Article  CAS  Google Scholar 

  25. L. Zhang, L. Li, F. Zhao, F. Chen, C. Xia, J. Solid State Ionics 192, 557–560 (2011)

    Article  CAS  Google Scholar 

  26. C. Jin, J. Liu, W. Guo, Y. Zhang, J. Power Sources 183, 506–511 (2008)

    Article  CAS  Google Scholar 

  27. T.-H. Kwon, T. Lee, H.-I. Yoo, J. Solid State Ionics 195, 25–35 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the New & Renewable Energy (No. 20093021030021) and the Human Resources Development (No. 20104010100500) under the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean Ministry of Knowledge Economy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Gun Shul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.G., Park, M.G., Yoon, H.H. et al. Application of GDC-YDB bilayer and LSM-YDB cathode for intermediate temperature solid oxide fuel cells. J Electroceram 31, 231–237 (2013). https://doi.org/10.1007/s10832-013-9796-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-013-9796-x

Keywords

Navigation