Skip to main content
Log in

Varistor behavior of Mn doped ZnO ceramics prepared from nanosized precursors

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Polycrystalline ZnO doped with MnO, from 2 to 15 mol%, was prepared from nanosized precursors. The effect of Mn doping and sintering temperature on phase evolution, microstructure and V-I characteristics were investigated. SEM images showed that the great merit of using nanoparticles is that the samples with high microstructural uniformity and lower grain size can be achieved. Varistor behavior was observed in all specimens, even in the undoped ceramics due to the oxidation process of zinc interstitial defects at grain boundaries. The electric field versus current density (E-J) curves indicated that the breakdown field Eb increased and the nonlinear coefficient α decreased with the increase in doping level. 2 mol% Mn doped ceramic sintered at 1100 °C exhibited the highest nonlinear coefficient, α = 40. The stability test under DC stress was performed for the undoped ZnO ceramics. ZnO varistor sintered at 1300 °C showed not only high nonlinearity, but also high stability under DC stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L.M. Levinson, H.R. Philipp, Am. Ceram. Soc. Bull. 65, 639 (1986)

    CAS  Google Scholar 

  2. D.R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999)

    Article  CAS  Google Scholar 

  3. L.M. Levinson, H.R. Philipp, J. Appl. Phys. 46, 1332 (1975)

    Article  CAS  Google Scholar 

  4. P.L. Hower, T.K. Gupta, J. Appl. Phys. 50, 4847 (1979)

    Article  CAS  Google Scholar 

  5. G.D. Mahan, L.M. Levinson, H.R. Philipp, J. Appl. Phys. 50, 2799 (1979)

    Article  CAS  Google Scholar 

  6. M. Matsuoka, Jpn. J. Appl. Phys. 10, 736 (1971)

    Article  CAS  Google Scholar 

  7. C.H. Nahm, Solid State Commun. 149, 795 (2009)

    Article  CAS  Google Scholar 

  8. C.-H. Kim, J.-H. Kim, J. Europ. Ceram. Soc. 24, 2537 (2004)

    Article  CAS  Google Scholar 

  9. M. Houabes, R. Metz, Ceram. Int. 33, 1191 (2007)

    Article  CAS  Google Scholar 

  10. H.I. Oh, J.H. Kim, J. Electroceram. 17, 1083 (2006)

    Article  CAS  Google Scholar 

  11. D. Xu, L. Shi, Z. Wu, Q. Zhong, X. Wu, J. Europ. Ceram. Soc. 29, 1789 (2009)

    Article  CAS  Google Scholar 

  12. J. Fan, R. Freer, J. Appl. Phys. 77, 4795 (1995)

    Article  CAS  Google Scholar 

  13. A.B. Alles, V.L. Burdick, J. Appl. Phys. 70, 6883 (1991)

    Article  CAS  Google Scholar 

  14. C.-W. Nahm, Solid State Commun. 141, 685 (2007)

    Article  CAS  Google Scholar 

  15. Y.W. Hong, J.H. Kim, Ceram. Int. 30, 1301 (2004)

    Article  CAS  Google Scholar 

  16. J. Han, A.M.R. Senos, P.Q. Mantas, J. Europ. Ceram. Soc. 22, 1653 (2002)

    Article  CAS  Google Scholar 

  17. H.I. Oh, J.H. Kim, J. Electroceram. 17, 1083 (2006)

    Article  CAS  Google Scholar 

  18. R.C. Buchanan, Ceramic materials for electronics (Marcel Dekker Inc, NewYork, 1991)

    Google Scholar 

  19. S. Li, J. Li, F. Liu, M.A. Alim, G. Chen, J. Phys. D: Appl. Phys. 35, 1884 (2002)

    Article  CAS  Google Scholar 

  20. S. Li, J. Li, M.A. Lim, J. Electroceram. 11, 119 (2003)

    Article  CAS  Google Scholar 

  21. L.T. Harry, J. Electroceram. 4, 33 (1999)

    Article  Google Scholar 

  22. C.-W. Nan, D.R. Clarck, J. Am. Ceram. Soc. 79, 3185 (1996)

    Article  CAS  Google Scholar 

  23. M.S. Wang, S.H. Oh, C.B. Park, IEEE Nanotechnology materials and devices conference, S. Korea (2006)

  24. J. Zhang, S. Cao, R. Zhang, L. Yu, C. Jing, Current Appl. Phys. 5, 381 (2005)

    Article  CAS  Google Scholar 

  25. L. Cong, F. Zhuowei, X. Zheng, X. Yewen, J. Electroceram. 21, 423 (2008)

    Article  CAS  Google Scholar 

  26. M. Ebrahimizadeh Abrishami, S.M. Hosseini, E. Attaran Kakhki, A. Kompany, M. Ghasemifard, Int. J. Nanosci. 9, 19 (2010)

    Article  Google Scholar 

  27. C. Leach, K.D. Vernon-Parrym, N.K. Ali, J. Electroceram. 25, 188 (2010)

    Article  CAS  Google Scholar 

  28. R. Einzinger, Ann. Rev. Mater. Sci. 17, 299 (1987)

    Article  CAS  Google Scholar 

  29. R. Einzinger, Mat. Res. Soc. Symp. 343 (1982)

  30. B. Straumal, B. Baretzky, A. Mazilkin, S. Protasova, A. Myatiev, P. Straumal, J. Europ. Ceram. Soc. 29, 1963 (2009)

    Article  CAS  Google Scholar 

  31. J. Shi, Q. Cao, Y. Wei, Y. Huang, Mater. Sci. Eng. B 99, 344 (2003)

    Article  Google Scholar 

  32. O.A. Fregoso, Rev. Mex. Fis. 40, 771 (1994)

    Google Scholar 

  33. İ. Özgür Özer, E. Suvaci, S. Bernik, Acta Mater. 58, 4126 (2010)

    Article  Google Scholar 

  34. M. Takada, H. Yoshino, S. Yoshkado, Key Eng. Mater. 350, 213 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ebrahimizadeh Abrishami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebrahimizadeh Abrishami, M., Kompany, A. & Hosseini, S.M. Varistor behavior of Mn doped ZnO ceramics prepared from nanosized precursors. J Electroceram 29, 125–132 (2012). https://doi.org/10.1007/s10832-012-9753-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-012-9753-0

Keywords

Navigation