Skip to main content
Log in

Lead-free Bi-based complex perovskite nanowires: Sol–gel-hydrothermal processing and the densification behavior

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

One dimensional ferroelectric nanostructure is noteworthy for their size-dependent dielectric, piezoelectric, and electro-optic properties with corresponding applications in smart devices such as transducers, actuators, and high-k dielectrics at the nanoscale. Due to their extremely small size and anisotropy, the control of nucleation and growth of one dimensional nanostructure materials is still a big challenge. Sol–gel-hydrothermal chemistry combines both the merits of sol–gel and hydrothermal technique, which offers a very useful tool for low-temperature synthesis of the ferroelectric nanowires. In this paper, we will review recent works devoted to the synthesis of Bi-based complex perovskite nanowires, i.e. Na0.5Bi0.5TiO3, K0.5Bi0.5TiO3, (K0.5Bi0.5)0.4Ba0.6TiO3 and (Na0.8 K0.2)0.5Bi0.5TiO3 systems. We will focus on the formation mechanism and morphology evolution of nanowires prepared in sol–gel-hydrothermal process. Moreover, due to the good sinterability of the nanowires, the high-densified single-phase ceramic can be fabricated even by a conventional sintering process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.E. Cohen, Nature 358, 136 (1992)

    Article  CAS  Google Scholar 

  2. J.F. Scott, Science 315, 954 (2007). doi:10.1126/science.1129564

    Article  CAS  Google Scholar 

  3. Z.Y. Wang, J. Hu, M.F. Yu, Appl. Phys. Lett. 89, 263119 (2006). doi:10.1063/1.2425047

    Article  Google Scholar 

  4. Z.Y. Wang, A.P. Suryavanshi, M.F. Yu, Appl. Phys. Lett. 89, 082903 (2006). doi:10.1063/1.2338015

    Article  Google Scholar 

  5. J.E. Spanier, A.M. Kolpak, J.J. Urban, I. Grinberg, L. Ouyang, W.S. Yun, A.M. Rappe, H.K. Park, Nano Lett. 6, 735 (2006). doi:10.1021/nl052538e

    Article  CAS  Google Scholar 

  6. J.W. Hong, D.N. Fang, Appl. Phys. Lett. 92, 012906 (2008). doi:10.1063/1.2830662

    Article  Google Scholar 

  7. G. Pilania, S.P. Alpay, R. Ramprasad, Phys. Rev. B 80, 014113 (2009). doi:10.1103/PhysRevB.80.014113

    Article  Google Scholar 

  8. J.W. Hong, D.N. Fang, J. Appl. Phys. 104, 064118 (2008). doi:10.1063/1.2982090

    Article  Google Scholar 

  9. Y.D. Hou, M.K. Zhu, F. Gao, H. Wang, B. Wang, H. Yan, C.S. Tian, J. Am. Ceram. Soc. 87, 847 (2004)

    Article  CAS  Google Scholar 

  10. Y.D. Hou, M.K. Zhu, C.S. Tian, H. Yan, Sens. Actuators A 116, 455 (2004). doi:10.1016/j.sna.2004.05.012

    Article  Google Scholar 

  11. T.R. Shrout, S.J. Zhang, J. Electroceram. 19, 111 (2007). doi:10.1007/s10832-007-9047-0

    CAS  Google Scholar 

  12. T. Takenaka, H. Nagata, Y. Hiruma, Jpn. J. Appl. Phys. 47, 3787 (2008). doi:10.1143/JJAP.47.3787

    Article  CAS  Google Scholar 

  13. J. Rodel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009). doi:10.1111/j.1551-2916.2009.03061.x

    Article  Google Scholar 

  14. P. Baettig, C.F. Schelle, R. LeSar, U.V. Waghmare, N.A. Spaldin, Chem. Mater. 17, 1376 (2005). doi:10.1021/cm0480418

    Article  CAS  Google Scholar 

  15. A.A. Belik, T. Wuernisha, T. Kamiyama, K. Mori, M. Maie, T. Nagai, Y. Matsui, E.T. Muromachi, Chem. Mater. 18, 133 (2006). doi:10.1021/cm052020b

    Article  CAS  Google Scholar 

  16. J. Zylberberg, A.A. Belik, E.T. Muromachi, Z.G. Ye, Chem. Mater. 19, 6385 (2007). doi:10.1021/cm071830f

    Article  CAS  Google Scholar 

  17. R.V.K. Mangalam, S.V. Bhat, A. Iyo, Y. Tanaka, A. Sundaresan, C.N.R. Rao, Solid State Commun. 146, 435 (2008). doi:10.1016/j.ssc.2008.03.039

    Article  CAS  Google Scholar 

  18. M.M. Kumar, V.R. Palkar, K. Srinivas, S.V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000)

    Article  CAS  Google Scholar 

  19. S.C. Zhao, G.R. Li, A.L. Ding, T.B. Wang, Q.R. Yin, J. Phys. D 39, 2277 (2006). doi:10.1088/0022-3727/39/10/042

    Article  CAS  Google Scholar 

  20. A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Jpn. J. Appl. Phys. 38, 5564 (1999). doi:10.1143/JJAP.38.5564

    Article  CAS  Google Scholar 

  21. Y.M. Li, W. Chen, J. Zhou, Q. Xu, H.J. Sun, M.S. Liao, Ceram. Int. 31, 139 (2005). doi:10.1016/j.ceramint.2004.04.010

    Article  Google Scholar 

  22. X.P. Jiang, L.Z. Li, M. Zeng, H.L.W. Chan, Mater. Lett. 60, 1786 (2006). doi:10.1016/j.matlet.2005.12.021

    Article  CAS  Google Scholar 

  23. C.Y. Kim, T. Sekino, K. Niihara, J. Am. Ceram. Soc. 86, 1464 (2003)

    Article  CAS  Google Scholar 

  24. M.K. Zhu, L. Hou, Y.D. Hou, J.B. Liu, H. Wang, H. Yan, Mater. Chem. Phys. 99, 329 (2006). doi:10.1016/j.matchemphys.2005.10.031

    Article  CAS  Google Scholar 

  25. L. Hou, Y.D. Hou, M.K. Zhu, J.L. Tang, J.B. Liu, H. Wang, H. Yan, Mater. Lett. 59, 197 (2005). doi:10.1016/j.matlet.2004.07.046

    Article  CAS  Google Scholar 

  26. Y.D. Hou, L. Hou, M.K. Zhu, H. Wang, H. Yan, Mater. Lett. 61, 3371 (2007). doi:10.1016/j.matlet.2006.11.065

    Article  CAS  Google Scholar 

  27. C. Wang, Y.D. Hou, H.Y. Ge, M.K. Zhu, H. Wang, H. Yan, J. Cryst. Growth 310, 4635 (2008). doi:10.1016/j.jcrysgro.2008.08.042

    Article  CAS  Google Scholar 

  28. C. Wang, Y.D. Hou, H.Y. Ge, M.K. Zhu, H. Yan, J. Eur. Ceram. Soc. 29, 2589 (2009). doi:10.1016/j.jeurceramsoc.2009.02.012

    Article  CAS  Google Scholar 

  29. P.M. Rorvik, K. Tadanaga, M. Tatsumisago, T. Grande, M.A. Einarsrud, J. Eur. Ceram. Soc. 29, 2575 (2009). doi:10.1016/j.jeurceramsoc.2009.02.004

    Article  CAS  Google Scholar 

  30. X.Y. Zhang, X. Zhao, C.W. Lai, J. Wang, X.G. Tang, J.Y. Dai, Appl. Phys. Lett. 85, 4190 (2004). doi:10.1063/1.1814427

    Article  CAS  Google Scholar 

  31. S. Singh, S.B. Krupanidhi, Phys. Lett. A 367, 356 (2007). doi:10.1016/j.physleta.2006.12.079

    Article  CAS  Google Scholar 

  32. C. Bae, H. Yoo, S. Kim, K. Lee, J. Kim, M.M. Sung, H. Shin, Chem. Mater. 20, 756 (2008). doi:10.1021/cm702138c

    Article  CAS  Google Scholar 

  33. D. Li, J.T. McCann, Y.N. Xia, M. Marquez, J. Am. Ceram. Soc. 89, 1861 (2006). doi:10.1111/j.1551-2916.2006.00989.x

    Article  CAS  Google Scholar 

  34. R. Ramaseshan, S. Sundarrajan, R. Jose, S. Ramakrishna, J. Appl. Phys. 102, 111101 (2007). doi:10.1063/1.2815499

    Article  Google Scholar 

  35. J.F. Yang, Y.D. Hou, C. Wang, M.K. Zhu, H. Yan, Appl. Phys. Lett. 91, 023118 (2007). doi:10.1063/1.2754366

    Article  Google Scholar 

  36. H. Deng, Y.C. Qiu, S.H. Yang, J. Mater. Chem. 19, 976 (2009). doi:10.1039/b815698k

    Article  CAS  Google Scholar 

  37. C.Y. Xu, L. Zhen, R. Yang, Z.L. Wang, J. Am. Chem. Soc. 129, 15444 (2007). doi:10.1021/ja077251t

    Article  CAS  Google Scholar 

  38. Z.Y. Cai, X.R. Xing, R.B. Yu, X.Y. Sun, G.R. Liu, Inorg. Chem. 46, 7423 (2007). doi:10.1021/ic700966n

    Article  CAS  Google Scholar 

  39. Y.B. Mao, S. Banerjee, S.S. Wong, J. Am. Chem. Soc. 125, 15718 (2003). doi:10.1021/ja038192w

    Article  CAS  Google Scholar 

  40. Y.B. Mao, T.J. Park, F. Zhang, H.J. Zhou, S.S. Wong, Small 3, 1122 (2007). doi:10.1002/smll.200700048

    Article  CAS  Google Scholar 

  41. H.Y. Ge, Y.D. Hou, C. Wang, M.K. Zhu, H. Yan, Jpn. J. Appl. Phys. 48, 041405 (2009). doi:10.1143/JJAP.48.041405

    Article  Google Scholar 

  42. Y.B. Mao, T.J. Park, S.S. Wong, Chem. Commun. 46, 5721 (2005). doi:10.1039/b509960a

    Article  Google Scholar 

  43. M.H. Zhang, H.Q. Fan, L. Chen, C. Yang, J. Alloys Compd. 476, 847 (2009). doi:10.1016/j.jallcom.2008.09.124

    Article  CAS  Google Scholar 

  44. W.E. Lee, D.D. Jayaseelan, S. Zhang, J. Eur. Ceram. Soc. 28, 1517 (2008). doi:10.1016/j.jeurceramsoc.2007.12.010

    Article  CAS  Google Scholar 

  45. J.T. Zeng, K.W. Kwok, H.L.W. Chan, Mater. Lett. 61, 409 (2007). doi:10.1016/j.matlet.2006.04.083

    Article  CAS  Google Scholar 

  46. P. Pinceloup, C. Courtois, A. Leriche, B. Thierry, J. Am. Ceram. Soc. 82, 3049 (1999)

    Article  CAS  Google Scholar 

  47. E.W. Shi, C.T. Xia, W.Z. Zhong, B.G. Wang, C.D. Feng, J. Am. Ceram. Soc. 80, 1567 (1997)

    Article  CAS  Google Scholar 

  48. M.M. Lencka, M. Oledzka, R.E. Riman, Chem. Mater. 12, 1323 (2000). doi:10.1021/cm9906654

    Article  CAS  Google Scholar 

  49. Y.J. Ma, J.H. Cho, Y.H. Lee, B.I. Kim, Mater. Chem. Phys. 98, 5 (2006). doi:10.1016/j.matchemphys.2004.09.045

    Article  CAS  Google Scholar 

  50. X.Z. Jing, Y.X. Li, Q.R. Yin, Mater. Sci. Eng. B 99, 506 (2003). doi:10.1016/S0921-5107(02)00515-9

    Article  Google Scholar 

  51. X.L. Chen, H.Q. Fan, L.J. Liu, J. Cryst. Growth 284, 434 (2005)

    Article  CAS  Google Scholar 

  52. Z.J. Li, B. Hou, Y. Xu, D. Wu, Y.H. Sun, W. Hu, F. Deng, J. Solid State Chem. 178, 1395 (2005). doi:10.1016/j.jssc.2004.12.034

    Article  CAS  Google Scholar 

  53. H. Wang, L. Wang, J.B. Liu, B. Wang, H. Yan, Mater. Sci. Eng. B 99, 495 (2003)

    Article  Google Scholar 

  54. Z.Q. Song, S.B. Wang, W. Yang, M. Li, H. Wang, H. Yan, Mater. Sci. Eng. B 113, 121 (2004). doi:doi:10.1016/j.mseb.2004.06.002

    Google Scholar 

  55. L. Hou, Y.D. Hou, X.M. Song, M.K. Zhu, H. Wang, H. Yan, Mater. Res. Bull. 41, 1330 (2006). doi:10.1016/j.materresbull.2005.12.010

    Article  CAS  Google Scholar 

  56. Y.D. Hou, L. Hou, S.Y. Huang, M.K. Zhu, H. Wang, H. Yan, Solid State Commun. 137, 658 (2006). doi:10.1016/j.ssc.2006.01.023

    Article  CAS  Google Scholar 

  57. Y.D. Hou, M.K. Zhu, L. Hou, J.B. Liu, J.L. Tang, H. Wang, H. Yan, J. Cryst. Growth 273, 500 (2005). doi:10.1016/j.jcrysgro.2004.09.055

    Article  CAS  Google Scholar 

  58. J.B. Liu, H. Wang, Y.D. Hou, M.K. Zhu, H. Yan, M. Yoshimura, Nanotechnology 15, 777 (2004). doi:10.1088/0957-4484/15/7/010

    Article  CAS  Google Scholar 

  59. Y.D. Hou, L. Hou, M.K. Zhu, H. Yan, Appl. Phys. Lett. 89, 243114 (2006). doi:10.1063/1.2405881

    Article  Google Scholar 

  60. Y.D. Hou, L. Hou, T.T. Zhang, M.K. Zhu, H. Wang, H. Yan, J. Am. Ceram. Soc. 90, 1738 (2007). doi:10.1111/j.1551-2916.2007.01657.x

    Article  CAS  Google Scholar 

  61. X.Q. Yang, Y.N. Zhao, Y. Yang, Z.H. Dong, Mater. Lett. 61, 3462 (2007). doi:10.1016/j.matlet.2006.11.088

    Article  CAS  Google Scholar 

  62. Y.M. Hu, H.S. Gu, D. Zhou, Z. Wang, H.L.W. Chan, Y. Wang, J. Am. Ceram. Soc. 93, 609 (2010). doi:10.1111/j.1551-2916.2009.03461.x

    Article  CAS  Google Scholar 

  63. L. Hou, Y.D. Hou, X.M. Song, M.K. Zhu, H. Wang, H. Yan, Chin. J. Inorg. Chem. 22, 563 (2006)

    CAS  Google Scholar 

  64. J.H. Liang, C. Peng, X. Wang, X. Zheng, R.J. Wang, X.P. Qiu, C.W. Nan, Y.D. Li, Inorg. Chem. 44, 9405 (2005). doi:10.1021/ic048237+

    Article  CAS  Google Scholar 

  65. A. Banerjee, S. Bose, Chem. Mater. 16, 5610 (2004). doi:10.1021/cm0490423

    Article  CAS  Google Scholar 

  66. H.Y. Ge, Y.D. Hou, M.K. Zhu, H. Wang, H. Yan, Chem. Commun. 41, 5137 (2008). doi:10.1039/b810342a

    Article  Google Scholar 

  67. S.J. Qiu, H.Q. Fan, C. Yang, J. Chen, J. Am. Ceram. Soc. 90, 3293 (2007). doi:10.1111/j.1551-2916.2007.01852.x

    Article  CAS  Google Scholar 

  68. X.D. Han, Z. Zhang, Z.L. Wang, Nano Brief Rep. Rev. 2, 249 (2007)

    CAS  Google Scholar 

  69. Y.M. Hu, H.S. Gu, X.C. Sun, J. You, J. Wang, Appl. Phys. Lett. 88, 193120 (2006). doi:10.1063/1.2203736

    Article  Google Scholar 

  70. H.S. Gu, Y.M. Hu, J. You, Z.L. Hu, Y. Yuan, T.J. Zhang, J. Appl. Phys. 101, 024319 (2007). doi:10.1063/1.2430768

    Article  Google Scholar 

  71. A. Polotai, K. Breece, E. Dickey, C. Randallw, A. Ragulya, J. Am. Ceram. Soc. 88, 3008 (2005). doi:10.1111/j.1551-2916.2005.00552.x

    Article  CAS  Google Scholar 

  72. T. Karaki, K. Yan, M. Adachi, Jpn. J. Appl. Phys. 46, 7035 (2007). doi:10.1143/JJAP.46.7035

    Article  CAS  Google Scholar 

  73. T.T. Zou, X.H. Wang, W. Zhao, L.T. Li, J. Am. Ceram. Soc. 91, 121 (2008). doi:10.1111/j.1551-2916.2007.01903.x

    Article  CAS  Google Scholar 

  74. T.T. Zou, X.H. Wang, H. Wang, C.F. Zhong, L.T. Li, I.W. Chen, Appl. Phys. Lett. 93, 192913 (2008). doi:10.1063/1.2995861

    Article  Google Scholar 

  75. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004). doi:10.1038/nature03028

    Article  CAS  Google Scholar 

  76. T. Kimura, T. Takahashi, T. Tani, Y. Saito, J. Am. Ceram. Soc. 87, 1424 (2004)

    Article  CAS  Google Scholar 

  77. S.H. Hong, S.T. McKinstry, G.L. Messing, J. Am. Ceram. Soc. 83, 113 (2000)

    Article  CAS  Google Scholar 

  78. C. Duran, S.T. McKinstry, G.L. Messing, J. Am. Ceram. Soc. 83, 2203 (2000)

    Article  CAS  Google Scholar 

  79. J.L. Jones, B.J. Iverson, K.J. Bowman, J. Am. Ceram. Soc. 90, 2297 (2007). doi:10.1111/j.1551-2916.2007.01820.x

    Article  CAS  Google Scholar 

  80. J.A. Horn, S.C. Zhang, U. Selvaraj, G.L. Messing, S.T. McKinstry, J. Am. Ceram. Soc. 82, 921 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was partially supported by the National Natural Science Foundation of China (Grant No. 60601020, 51072008), the Natural Science Foundation of Beijing (Grant No. 2102006), and the PHR (IHLB) (Grant No. PHR201008012, PHR201007101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Dong Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, YD., Hou, L., Zhao, JL. et al. Lead-free Bi-based complex perovskite nanowires: Sol–gel-hydrothermal processing and the densification behavior. J Electroceram 26, 37–43 (2011). https://doi.org/10.1007/s10832-010-9625-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-010-9625-4

Keywords

Navigation