Skip to main content
Log in

First-principles density-functional calculations on HCr3O8: An exercise to better understand the ACr3O8(A = alkali metal) family

  • Section 3: Functional Ceramics
  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Accurate ab initio density-functional calculations are performed to understand structural stability, electronic structure, and magnetic properties of the ACr3O8(A = H, Li, Na, K, Rb, Cs) series. The ground-state structures for the compounds with A = Li−Rb take the same KCr3O8-type atomic arrangement (space group C2/m), whereas CsCr3O8adopts a modified atomic architecture (prototype; space group Pnma), in agreement with available experimental findings. The hypothetical compound HCr3O8is found to stabilize in an LiV3O8-type structure (space group P21/m), with an unexpectedly large equilibrium volume. The electronic structures of the ACr3O8compounds are analyzed using density-of-states, charge-density, and electron-localization-function plots, and all are found to exhibit semiconducting (insulating at 0 K) properties with very narrow band gaps. The Cr atoms occur in two different valence states and all compounds (except NaCr3O8) are found to exhibit antiferromagnetic ordering of magnetic moments at 0 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.N.R. Rao and A.K. Raychauduri, In Colossal Magnetoresistance, Charge Ordering, and Related Properties of Manganese Oxides, edited by C.N.R. Rao and B. Raveau (World Scientific, Singapore, 1998).

    Google Scholar 

  2. R. Vidya, P. Ravindran, P. Vajeeston, H. Fjellvåg, and A. Kjekshus, Phys. Rev. B, 72, 014411 (2005).

    Article  Google Scholar 

  3. R. Vidya, P. Ravindran, A. Kjekshus, and H. Fjellvåg, Phys. Rev. B (accepted).

  4. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994); G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  5. G. Kresse and J. Furthmuller, Comput. Mater. Sci., 6, 15 (1996).

    Article  CAS  Google Scholar 

  6. J.P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B, 54, 16533 (1996); J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).

    Article  CAS  Google Scholar 

  7. K.-A. Wilhelmi, Arkiv Kemi, 6, 131 (1967); Chem. Commun, 437 (1966).

    Google Scholar 

  8. K.-A. Wilhelmi, Doctoral Thesis, University of Stockholm (Stockholm, 1966); Acta Chem. Scand., 22, 2565 (1968).

  9. M.J. Saavedra, C. Parada, and E.J. Baran, J. Phys. Chem. Solids, 57, 1929 (1996).

    Article  CAS  Google Scholar 

  10. K.-A. Wilhelmi, Acta Chem. Scand., 12, 1065 (1958).

    Google Scholar 

  11. U. Häussermann, H. Blomqvist, and D. Noréus, Inorg. Chem., 41, 3684 (2002).

    Article  Google Scholar 

  12. Y. Takeda, R. Kanno, T. Tsuji, and O. Yamamoto, J. Electrochem. Soc., 131, 2006 (1984).

    Article  CAS  Google Scholar 

  13. W. Klemm, Z. Anorg. Allg. Chem., 301, 323 (1959).

    Article  CAS  Google Scholar 

  14. H. Fjellvåg, Unpublished results.

  15. P. Ravindran, P. Vajeeston, R. Vidya, A. Kjekshus, and H. Fjellvåg, Phys. Rev. Lett., 89, 106403 (2002).

    Article  CAS  Google Scholar 

  16. A. Savin, R. Nesper, S. Wengert, and T. Fässler, Angew. Chem. Int. Ed. Engl., 36, 1809 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vidya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidya, R., Ravindran, P., Kjekshus, A. et al. First-principles density-functional calculations on HCr3O8: An exercise to better understand the ACr3O8(A = alkali metal) family. J Electroceram 17, 15–20 (2006). https://doi.org/10.1007/s10832-006-9929-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-006-9929-6

Keywords

Navigation