Skip to main content
Log in

Resonance modulation, annihilation and generation of anti-resonance and anti-phasonance in 3D neuronal systems: interplay of resonant and amplifying currents with slow dynamics

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Subthreshold (membrane potential) resonance and phasonance (preferred amplitude and zero-phase responses to oscillatory inputs) in single neurons arise from the interaction between positive and negative feedback effects provided by relatively fast amplifying currents and slower resonant currents. In 2D neuronal systems, amplifying currents are required to be slave to voltage (instantaneously fast) for these phenomena to occur. In higher dimensional systems, additional currents operating at various effective time scales may modulate and annihilate existing resonances and generate antiresonance (minimum amplitude response) and antiphasonance (zero-phase response with phase monotonic properties opposite to phasonance). We use mathematical modeling, numerical simulations and dynamical systems tools to investigate the mechanisms underlying these phenomena in 3D linear models, which are obtained as the linearization of biophysical (conductance-based) models. We characterize the parameter regimes for which the system exhibits the various types of behavior mentioned above in the rather general case in which the underlying 2D system exhibits resonance. We consider two cases: (i) the interplay of two resonant gating variables, and (ii) the interplay of one resonant and one amplifying gating variables. Increasing levels of an amplifying current cause (i) a response amplification if the amplifying current is faster than the resonant current, (ii) resonance and phasonance attenuation and annihilation if the amplifying and resonant currents have identical dynamics, and (iii) antiresonance and antiphasonance if the amplifying current is slower than the resonant current. We investigate the underlying mechanisms by extending the envelope-plane diagram approach developed in previous work (for 2D systems) to three dimensions to include the additional gating variable, and constructing the corresponding envelope curves in these envelope-space diagrams. We find that antiresonance and antiphasonance emerge as the result of an asymptotic boundary layer problem in the frequency domain created by the different balances between the intrinsic time constants of the cell and the input frequency f as it changes. For large enough values of f the envelope curves are quasi-2D and the impedance profile decreases with the input frequency. In contrast, for f ≪ 1 the dynamics are quasi-1D and the impedance profile increases above the limiting value in the other regime. Antiresonance is created because the continuity of the solution requires the impedance profile to connect the portions belonging to the two regimes. If in doing so the phase profile crosses the zero value, then antiphasonance is also generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Beatty, J., Song, S.C., & Wilson, C.J. (2015). Cell-type-specific resonances shape the response of striatal neurons to synaptic inputs. Journal of Neurophysiology, 113, 688–700.

    Article  PubMed  Google Scholar 

  • Boehlen, A., Heinemann, U., & Erchova, I. (2010). The range of intrinsic frequencies represented by medial entorhinal cortex stellate cells extends with age. The Journal of Neuroscience, 30, 4585–4589.

    Article  CAS  PubMed  Google Scholar 

  • Boehlen, A., Henneberger, C., Heinemann, U., & Erchova, I. (2013). Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. The Journal of Physiology, 109, 445–463.

    Google Scholar 

  • Chen, Y., Li, Rotstein, H.G., & Nadim, F. (2016). Membrane potential resonance frequency directly influences network frequency through gap junctions. Journal of Neurophysiology, 116, 1554–1563.

    Article  PubMed  Google Scholar 

  • D’Angelo, E., Koekkoek, S.K.E., Lombardo, P., Solinas, S., Ros, E., Garrido, J., Schonewille, M., & De Zeeuw, C.I. (2009). Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience, 162, 805–815.

    Article  PubMed  Google Scholar 

  • Dorval, A.D. Jr., & White, J.A. (2005). Channel noise is essential for perithreshold oscillations in entorhinal stellate neurons. The Journal of Neuroscience, 25, 10025–10028.

    Article  CAS  PubMed  Google Scholar 

  • Erchova, I., Kreck, G., Heinemann, U., & Herz, A.V.M. (2004). Dynamics of rat entorhinal cortex layer II and III cells: Characteristics of membrane potential resonance at rest predict oscillation properties near threshold. The Journal of Physiology, 560, 89–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel, T.A., Schimansky-Geier, L., Herz, A.V., Schreiber, S., & Erchova, I. (2008). Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex. The Journal of Physiology, 100, 1576–1588.

    CAS  Google Scholar 

  • Fox, D., Tseng, H., Rotstein, H.G., & Nadim, F. (2013). Membrane potential resonance of bursting neuron captured with an ICa/Ih biophysical model using multi-objective evolutionary algorithms. Society for Neuroscience Abstracts, 372.08, 79.

    Google Scholar 

  • Fox, D.M., Tseng, H.-A., Rotstein, H.G., & Nadim, F. (2014). The role of a persistent inward current in shaping membrane resonance properties of different neuron types in an oscillatory network. Society for Neuroscience ? Abstracts, 215, 06.

    Google Scholar 

  • Fox, D., Tseng, H., Rotstein, H.G., & Nadim, F. (2014). Using multi-objective evolutionary algorithms to predict the parameters that determine membrane resonance in a biophysical model of bursting neurons. BMC Neuroscience, 15, 79.

    Article  Google Scholar 

  • Fox, D.M., Rotstein, H.G., & Nadim, F. (2016). Neuromodulation produces complex changes in resonance profiles of neurons in an oscillatory network. Society for Neuroscience Abstracts, 811, 08.

    Google Scholar 

  • Fox, D., Tseng, H., Smolinsky, T., Rotstein, H.G., & Nadim, F. (2017). Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents. PLoS Computational Biology. in press.

  • Gutfreund, Y., Yarom, Y., & Segev, I. (1995). Subthreshold oscillations and resonant frequency in Guinea pig cortical neurons: Physiology and modeling. The Journal of Physiology, 483, 621– 640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gastrein, P., Campanac, E., Gasselin, C., Cudmore, R.H., Bialowas, A., Carlier, E., Fronzaroli-Molinieres, L., Ankri, N., & Debanne, D. (2011). The role of hyperpolarization-activated cationic current in spike-time precision and intrinsic resonance in cortical neurons in vitro. The Journal of Physiology, 589, 3753–3773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas, J.S., & White, J.A. (2002). Frequency selectivity of layer II stellate cells in the medial entorhinal cortex. The Journal of Physiology, 88, 2422–2429.

    Google Scholar 

  • Heys, J.G., Giacomo, L.M., & Hasselmo, M.E. (2010). Cholinergic modulation of the resonance properties of stellate cells in layer II of the medial entorhinal. Journal of Neurophysiology, 104, 258–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heys, J.G., Schultheiss, N.W., Shay, C.F., Tsuno, Y., & Hasselmo, M.E. (2012). Effects of acetylcholine on neuronal properties in entorhinal cortex. Frontiers in Behavioral Neuroscience, 6, 32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conductance and excitation in nerve. The Journal of Physiology, 117, 500– 544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutcheon, B., Miura, R.M., & Puil, E. (1996). Subthreshold membrane resonance in neocortical neurons. The Journal of Physiology, 76, 683–697.

    CAS  Google Scholar 

  • Hutcheon, B., & Yarom, Y. (2000). Resonance, oscillations and the intrinsic frequency preferences in neurons. Trends in Neurosciences, 23, 216–222.

    Article  CAS  PubMed  Google Scholar 

  • Hu, H., Vervaeke, K., & Storm, J.F. (2002). Two forms of electrical resonance at theta frequencies generated by M-current, h-current and persistent NA + current in rat hippocampal pyramidal cells. The Journal of Physiology, 545.3, 783–805.

    Article  Google Scholar 

  • Hu, H., Vervaeke, K., Graham, J.F., & Storm, L.J. (2009). Complementary theta resonance filtering by two spatially segregated mechanisms in CA1 hippocampal pyramidal neurons. The Journal of Neuroscience, 29, 14472–14483.

    Article  CAS  PubMed  Google Scholar 

  • Kispersky, T., White, J.A., & Rotstein, H.G. (2010). The mechanism of abrupt transition between theta and hyperexcitable spiking activity in medial entorhinal cortex layer II stellate cells. PloS One, 5, e13697.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lampl, I., & Yarom, Y. (1997). Subthreshold oscillations and resonant behaviour: Two manifestations of the same mechanism. Neuron, 78, 325–341.

    CAS  Google Scholar 

  • Ledoux, E., & Brunel, N. (2011). Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs. Frontiers in Computational Neuroscience, 5, 1–17.

    Article  Google Scholar 

  • Leung, L.S., & Yu, H.W. (1998). Theta-frequency resonance in hippocampal CA1 neurons in vitro demonstrated by sinusoidal current injection. Journal of Neurophysiology, 79, 1592–1596.

    CAS  PubMed  Google Scholar 

  • Llinás, R.R., & Yarom, Y. (1986). Oscillatory properties of guinea pig olivary neurons and their pharmachological modulation: An in vitro study. The Journal of Physiology, 376, 163–182.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcelin, B., Becker, A., Migliore, M., Esclapez, M., & Bernard, C. (2009). H channel-dependent deficit of theta oscillation resonance and phase shift in temporal lobe epilepsy. Neurobiology of Disease, 33, 436–447.

    Article  CAS  PubMed  Google Scholar 

  • Moca, V.V., Nicolic, D., Singer, W., & Muresan, R. (2014). Membrane resonance enables stable robust gamma oscillations. Cerebral Cortex, 24, 119–142.

    Article  PubMed  Google Scholar 

  • Muresan, R., & Savin, C. (2007). Resonance or integration? self-sustained dynamics and excitability of neural microcircuits. Journal of Neurophysiology, 97, 1911–1930.

    Article  PubMed  Google Scholar 

  • Narayanan, R., & Johnston, D. (2007). Long-term potentiation in rat hippocampal neurons is accompanied by spatially widespread changes in intrinsic oscillatory dynamics and excitability. Neuron, 56, 1061–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayanan, R., & Johnston, D. (2008). The h channel mediates location dependence and plasticity of intrinsic phase response in rat hippocampal neurons. The Journal of Neuroscience, 28, 5846–5850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolan, M.F., Dudman, J.T., Dodson, P.D., & Santoro, B. (2007). HCN1 Channels control resting and active integrative properties of stellate cells from layer II of the entorhinal cortex. The Journal of Neuroscience, 27, 12440–12551.

    Article  CAS  PubMed  Google Scholar 

  • Pike, F.G., Goddard, R.S., Suckling, J.M., Ganter, P., Kasthuri, N., & Paulsen, O. (2000). Distinct frequency preferences of different types of rat hippocampal neurons in response to oscillatory input currents. The Journal of Physiology, 529, 205–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prinz, A.A., Thirumalai, V., & Marder, E. (2003). The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. The Journal of Neuroscience, 23, 943–954.

    CAS  PubMed  Google Scholar 

  • Rathour, R.K., & Narayanan, R. (2012). Inactivating ion channels augment robustness of subthreshold intrinsic response dynamics to parametric variability in hippocampal model neurons. The Journal of Physiology, 590, 5629–5652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathour, R.K., & Narayanan, R. (2014). Homeostasis of functional maps in inactive dendrites emerges in the absence of individual channelostasis. Proceedings of the National Academy of Sciences of the United States of America, 111, E1787–E1796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson, M.J.E., Brunel, N., & Hakim, V. (2003). From subthreshold to firing-rate resonance. The Journal of Physiology, 89, 2538–2554.

    Google Scholar 

  • Rotstein, H.G. (2013). Preferred frequency responses to oscillatory inputs in an electrochemical cell model: Linear amplitude and phase resonance. Physical Review E, 88, 062913.

    Article  Google Scholar 

  • Rotstein, H.G. (2014). Frequency preference response to oscillatory inputs in two-dimensional neural models: a geometric approach to subthreshold amplitude and phase resonance. The Journal of Mathematical Neuroscience, 4, 11.

    Article  PubMed  Google Scholar 

  • Rotstein, H.G., & Nadim, F. (2014). Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying current. Journal of Computational Neuroscience, 37, 9–28.

    Article  PubMed  Google Scholar 

  • Rotstein, H.G. (2015). Subthreshold amplitude and phase resonance in models of quadratic type: nonlinear effects generated by the interplay of resonant and amplifying currents. Journal of Computational Neuroscience, 38, 325–354.

    Article  PubMed  Google Scholar 

  • Rotstein, H.G. (2016). The shaping of intrinsic membrane potential oscillations: positive/negative feedback, ionic resonance/amplification, nonlinearities and time scales. Journal of Computational Neuroscience (2017), 42, 133–166.

    Article  Google Scholar 

  • Schreiber, S., Erchova, I., Heinemann, U., & Herz, A.V. (2004). Subthreshold resonance explains the frequency-dependent integration of periodic as well as random stimuli in the entorhinal cortex. The Journal of Physiology, 92, 408–415.

    Google Scholar 

  • Schmidt, S.L., Dorsett, C.R., Iyengar, A.K., & Frölich, F. (2016). Interaction of intrinsic and synaptic currents mediate network resonance driven by layer V pyramidal cells Cereb. Cortex, page. doi:10.1093/cercor/bhw242.

  • Sharp, A.A., O’Neil, M.B., Abbott, L.F., & Marder, E. (1993). The dynamic clamp: artificial conductances in biological neurons. Trends in Neurosciences, 16, 389–394.

    Article  CAS  PubMed  Google Scholar 

  • Skinner, F.K. (2006). Conductance-based models. Scholarpedia, 1, 1408.

    Article  Google Scholar 

  • Song, S.C., Beatty, J.A., & Wilson, C.J. (2016). The ionic mechanism of membrane potential oscillations and membrane resonance in striatal lts interneurons. Journal of Neurophysiology, 116, 1752–1764.

    Article  CAS  PubMed  Google Scholar 

  • Solinas, S., Forti, L., Cesana, E., Mapelli, J., De Schutter, E., & nAngelo, E. (2007). Fast-reset of pacemaking and theta-frequency resonance in cerebellar Golgi cells: simulations of their impact in vivo. Frontiers in Cellular Neuroscience, 1, 4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stark, E., Eichler, R., Roux, L., Fujisawa, S., Rotstein, H.G., & Buzsáki, G. (2013). Inhibition-induced theta resonance in cortical circuits. Neuron, 80, 1263–1276.

    Article  CAS  PubMed  Google Scholar 

  • Tikidji-Hamburyan, R.A., Martínez, J.J., White, J.A., & Canavier, C. (2015). Resonant interneurons can increase robustness of gamma oscillations. The Journal of Neuroscience, 35, 15682–15695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tohidi, V., & Nadim, F. (2009). Membrane resonance in bursting pacemaker neurons of an oscillatory network is correlated with network frequency. The Journal of Neuroscience, 6427, 6435.

    Google Scholar 

  • Tseng, H., & Nadim, F. (2010). The membrane potential waveform on bursting pacemaker neurons is a predictor of their preferred frequency and the network cycle frequency. The Journal of Neuroscience, 30, 10809–10819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, N., Hsiao, C.-F., & Chandler, S.H. (2001). Membrane resonance and subthreshold membrane oscillations in mesencephalic V neurons: Participants in burst generation. The Journal of Neuroscience, 21, 3729–3739.

    CAS  PubMed  Google Scholar 

  • Zemankovics, R., Káli, S., Paulsen, O., Freund, T.F., & Hájos, N. (2010). Differences in subthershold resonance of hippocampal pyramidal cells and interneurons: The role of h-current and passive membrane characteristics. The Journal of Physiology, 588, 2109–2132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF grants DMS-1313861 and DMS-1608077 (HGR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio G. Rotstein.

Ethics declarations

Conflict of interests

The author declares that he has no conflict of interest.

Additional information

Action Editor: Nicolas Brunel

Appendices

Appendix

A Impedance and phase profiles for 2D and 3D linear systems: Analytic expressions

In order to analytically compute he impedance and phase profiles for 3D linear generic systems we use

$$ \left\{\begin{array}{ll} x^{\prime} = a\, x + b\, y + c\, z + A_{in}\, e^{i\, \omega\, t},\\ y^{\prime} = \alpha\, x + p\, y \\ z^{\prime} = \beta\, x + q\, z, \end{array} \right. $$
(44)

where a, b, c, α, β, p and q are constant, ω > 0 and A i n ≥ 0.

The characteristic polynomial for the corresponding homogeneous system (A i n = 0) is given by

$$\begin{array}{@{}rcl@{}} r^3 &-& (a + p + q)\, r^2 + (a\, p + a\, q + p\, q - c\, \beta - b\, \alpha )\, r\\ &&+ b\, \alpha\, q + c\, \beta\, p - a\, p\, q = 0. \end{array} $$
(45)

The particular solution to system (44) has the form

$$\begin{array}{@{}rcl@{}} x_p(t) = A_{out} e^{i \omega t}, y_p(t) \,=\, B_{out} e^{i \omega t} \text{and} z_p(t) = C_{out} e^{i\, \omega t},\\ \end{array} $$
(46)

Substituting (46) into system (44), rearranging terms, and solving the resulting algebraic system one obtains

$$ Z(\omega) = \frac{A_{out}}{A_{in}} = \frac{P_r(\omega) + i\, P_i(\omega)}{Q_r(\omega) + i\, Q_i(\omega)} $$
(47)

where

$$ P_{r}(\omega) = p\, q - \omega^2, $$
(48)
$$ P_i(\omega) = -(p + q)\, \omega, $$
(49)
$$ Q_r(\omega) = (a + p + q)\, \omega^2 - a\, p\, q + b\, \alpha\, q + c\, \beta\, p, $$
(50)

and

$$ Q_i(\omega) = (a\, p + a\, q + p\, q - b\, \alpha - c\, \beta - \omega^2)\, \omega. $$
(51)

From Eq. (47)

$$ |Z|^2(\omega) := \frac{A_{out}^2}{A_{in}^2} = \frac{P_r^2(\omega) + P_i^2(\omega)}{Q_r^2(\omega) + Q_i^2(\omega)} $$
(52)

and

$$ \phi = \tan^{-1} \frac{P_r(\omega)\, Q_i(\omega)-P_i(\omega)\, Q_r(\omega)}{P_r(\omega)\, Q_r(\omega) + P_i(\omega)\, Q_i(\omega)}. $$
(53)

For a 2D linear system (c = q = 0), the characteristic polynomial for the corresponding homogeneous system (A i n = 0) is given by

$$ r^2 - (a + p)\, r + (a\, p - b\, \alpha )\, = 0. $$
(54)

The roots of the characteristic polynomial are given by

$$ r_{1,2} = \frac{(a + p) \pm \sqrt{(a - p)^2 + 4\, b\, \alpha}}{2}. $$
(55)

From Eq. (55), the homogeneous (unforced) system displays oscillatory solutions with a natural frequency f n a t (Hz) given by

$$ f_{nat} = \mu\, \frac{1000}{2\, \pi}, \ \ \ \ \ \ \ \ \ \ \ \ \mu = \sqrt{-4 b \alpha -(a-p)^2}, $$
(56)

provided 4 b α + (ap)2 < 0.

The impedance amplitude and phase are given, respectively, by

$$ |Z(\omega) |^2 := \frac{A_{out}^2}{A_{in}^2} = \frac{p^2 + \omega^2}{[\, a\, p - b\, \alpha - \omega^2\, ]^2 + (a+p)^2\, \omega^2}, $$
(57)

and

$$ \phi(\omega) = \tan^{-1} \frac{(a\, p - b\, \alpha - \omega^2)\ \omega - (a+p)\, \omega\, p}{(a\, p - b\, \alpha - \omega^2)\, p + (a + p)\ \omega^2}. $$
(58)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotstein, H.G. Resonance modulation, annihilation and generation of anti-resonance and anti-phasonance in 3D neuronal systems: interplay of resonant and amplifying currents with slow dynamics. J Comput Neurosci 43, 35–63 (2017). https://doi.org/10.1007/s10827-017-0646-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-017-0646-8

Keywords

Navigation