Skip to main content
Log in

The local and non-local components of the local field potential in awake primate visual cortex

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The Local Field Potential (LFP) is the analog signal recorded from a microelectrode inserted into cortex, typically in the frequency band of approximately 1 to 200 Hz. Here visual stimuli were flashed on in the receptive fields of primary visual cortical neurons in awake behaving macaques, and both isolated single units (neurons) and the LFP signal were recorded from the same unipolar microelectrode. The fall-off of single unit activity as a visual stimulus was moved from near the center to near the edge of the receptive field paralleled the fall-off of the stimulus-locked (evoked) LFP response. This suggests that the evoked LFP strongly reflects local neuronal activity. However, the evoked LFP could be significant even when the visual stimulus was completely outside the receptive field and the single unit response had fallen to zero, although this phenomenon was variable. Some of the non-local components of the LFP may be related to the slow distributed, or non-retinotopic, LFP signal previously observed in anesthetized animals. The induced (not time-locked to stimulus onset) component of the LFP showed significant increases only for stimuli within the receptive field of the single units. While the LFP primarily reflects local neuronal activity, it can also reflect neuronal activity at more distant sites, although these non-local components are typically more variable, slower, and weaker than the local components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abeles, M., & Goldstein, M. H., Jr. (1977). Multispike train analysis. Proceedings of the IEEE, 65, 762–773.

    Article  Google Scholar 

  • Berens, A., Keliris, G. A., Ecker, A. S., Logothetis, N. K., & Tolias, A. S. (2008). Comparing the feature selectivity of the gamma-band of the local field potential and the underlying spiking activity in primate visual cortex. Frontiers in Systems Neuroscience, 2, 1–11.

    Article  Google Scholar 

  • Bringuier, V., Chavane, F., Glaeser, L., & Frégnac, Y. (1999). Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science, 283, 695–699.

    Article  CAS  PubMed  Google Scholar 

  • Doty, R. W. (1958). Potentials evoked in cat cerebral cortex by diffuse and by punctiform photic stimuli. Journal of Neurophysiology, 21, 437–464.

    CAS  PubMed  Google Scholar 

  • Ebersole, J. S., & Kaplan, B. J. (1981). Intracortical evoked potentials of cats elicited by punctate visual stimuli in receptive field peripheries. Brain Research, 224, 1601–1664.

    Article  Google Scholar 

  • Engel, A. K., König, P., Gray, C. M., & Singer, W. (1990). Stimulus-dependent neuronal oscillations in cat visual cortex: inter-columnar interaction as determined by cross-correlation analysis. European Journal of Neuroscience, 2, 588–606.

    Article  PubMed  Google Scholar 

  • Fahle, M., & Bach, M. (2006). Origin of the visual evoked potentials. In J. R. Heckenlively & G. B. Arden (Eds.), Principles and practice of clinical electrophysiology of vision (2nd ed.). Cambridge: MIT.

    Google Scholar 

  • Gamlin, P. D. R., Zhang, H., Harlow, A., & Barbur, J. L. (1998). Pupil responses to stimulus color, structure and light flux increments in the rhesus monkey. Vision Research, 38, 3353–3358.

    Article  CAS  PubMed  Google Scholar 

  • Gattass, R., Gross, C. G., & Sandell, J. H. (1981). Visual topography of V2 in the macaque. Journal of Comparative Neurology, 201, 519–539.

    Article  CAS  PubMed  Google Scholar 

  • Gawne, T. J., & Martin, J. M. (2002). Responses of primate visual cortical neurons to stimuli presented by flash, saccade, blink, and external darkening. Journal of Neurophysiology, 88, 2178–2186.

    Article  PubMed  Google Scholar 

  • Kasamtsu, T., Mizobe, K., & Sutter, E. (2005). Muscimol and baclofen differentially suppress retinotopic and nonretinotopic responses in visual cortex. Visual Neuroscience, 22, 839–858.

    Google Scholar 

  • Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D. L., & Carandini, M. (2009). Local origin of field potentials in visual cortex. Neuron, 61, 35–41.

    Article  CAS  PubMed  Google Scholar 

  • Kitano, M., Niiyama, K., Kasamatsu, T., Sutter, E. E., & Norcia, A. M. (1994). Retinotopic and nonretinotopic field potentials in cat visual cortex. Visual Neuroscience, 11, 953–977.

    Article  CAS  PubMed  Google Scholar 

  • Kitano, M., Kasamatsu, T., Norcia, A. M., & Sutter, E. E. (1995). Spatially distributed responses induced by contrast reversal in cat visual cortex. Experimental Brain Research, 104, 279–309.

    Article  Google Scholar 

  • Kreiman, G., Hung, C. P., Kraskov, A., Quiroga, R. Q., Poggio, T., & DiCarlo, J. J. (2006). Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex. Neuron, 49, 433–445.

    Article  CAS  PubMed  Google Scholar 

  • Kruse, W., & Eckhorn, R. (1996). Inhibition of sustained gamma oscillations (35–80 Hz) by fast transient responses in cat visual cortex. Proceedings of the National Academy of Science, 93, 6112–6117.

    Article  CAS  Google Scholar 

  • Leigh, R. J., & Zee, D. S. (2006). The neurology of eye movements (4th ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Liu, J., & Newsome, W. T. (2006). Local field potential in cortical area MT. Stimulus tuning and behavioral considerations. Journal of Neuroscience, 26, 7779–7790.

    Article  CAS  PubMed  Google Scholar 

  • Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412, 150–157.

    Article  CAS  PubMed  Google Scholar 

  • Logothetis, N. K., Kayser, C., & Oeltermann, A. (2007). In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron, 55, 809–823.

    Article  CAS  PubMed  Google Scholar 

  • Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiological Reviews, 65, 37–100.

    CAS  PubMed  Google Scholar 

  • Nunez, P. L., Wingeier, B. M., & Silberstein, R. B. (2001). Spatial-temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks. Human Brain Mapping, 13, 125–164.

    Article  CAS  PubMed  Google Scholar 

  • Richmond, B. J., Hertz, J. A., & Gawne, T. J. (1999). The relation between V1 neuronal responses and eye movement-like stimulus presentations. Neurocomputing, 26–27, 247–254.

    Article  Google Scholar 

  • Silverman, B. W. (1986). Density estimation for statistics and data analysis. New York: Chapman and Hall.

    Google Scholar 

  • Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520–521.

    Article  CAS  PubMed  Google Scholar 

  • Weiner, M. C., Oram, M. W., Liu, Z., & Richmond, B. (2001). Consistency of encoding in monkey visual cortex. Journal of Neuroscience, 21, 8210–8221.

    Google Scholar 

  • Xing, D., Yeh, C. I., & Shapley, R. M. (2009). Spatial spread of the local field potential and it laminar variation in visual cortex. Journal of Neuroscience, 29, 11540–11549.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation grant IOB 0622318. Thanks are given to James Black for technical assistance, to Chris Aura for useful discussions, and to Deirdre Gawne for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Gawne.

Additional information

Action Editor: Gaute T. Einevoll

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gawne, T.J. The local and non-local components of the local field potential in awake primate visual cortex. J Comput Neurosci 29, 615–623 (2010). https://doi.org/10.1007/s10827-010-0223-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0223-x

Keywords

Navigation