Skip to main content
Log in

Research on high sensitivity fano resonance sensing based on MIM waveguide coupled with double Fibonacci spirals

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, a metal–insulator–metal waveguide coupled with double Fibonacci spiral structure is designed and studied. The Fano resonance characteristics of the structure are analyzed in detail by means of transmission spectra and magnetic field distribution using finite element method. By changing the geometric parameters and refractive index, the sensing characteristics of the structure are quantitatively analyzed. This structure can be used in sensors, not only the sensitivity can reach an extremely high value of 3350 nm/RIU, but also the refractive index and peak wavelength show an excellent linear relationship. This structure provides a new scheme for the design of high sensitivity sensors. In addition, by measuring the refractive index of sodium chloride solution, it is proved that the structure has practical application prospect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author upon reasonable request.

Abbreviations

SPPs:

Surface plasmon polaritons

MIM:

Metal–insulator–metal

DFSS:

Double Fibonacci spirals structure

TM0 :

The fundamental transverse magnetic mode

References

  1. Kazanskiy, N.L., Khonina, S.N., Butt, M.A.: Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: a brief review. Phys. E-Low-Dimens. Syst. Nanostruct. 117, 113798 (2020)

    Article  Google Scholar 

  2. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)

    Article  Google Scholar 

  3. Qiao, L.T., et al.: Study on the Fano resonance of coupling M-type cavity based on surface plasmon polaritons. Opt. Commun. 433, 144–149 (2019)

    Article  Google Scholar 

  4. Tian, J.P., et al.: Fano resonance and its application using a defective disk resonator coupled to an MDM plasmon waveguide with a nano-wall. Optik 208, 164136 (2020)

    Article  Google Scholar 

  5. Chen, J.F., et al.: Refractive index sensing based on multiple fano resonances in a split-ring cavity-coupled MIM waveguide. Photonics 8(11), 472 (2021)

    Article  Google Scholar 

  6. Xiao, G.L., et al.: High sensitivity plasmonic sensor based on fano resonance with inverted U-Shaped resonator. Sensors 21(4), 1164 (2021)

    Article  Google Scholar 

  7. Wang, Y.L., Hou, Z.L., Yu, L.: Plasmonic nanosensor based on sharp Fano resonances induced by aperture-coupled slot system. Opt. Commun. 480, 126438 (2021)

    Article  Google Scholar 

  8. Salehnezhad, Z., Soroosh, M., Farmani, A.: Design and numerical simulation of a sensitive plasmonic-based nanosensor utilizing MoS2 monolayer and graphene. Diam. Related Mater. 131, 109594 (2023)

    Article  Google Scholar 

  9. Farmani, A.: Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. J. Opt. Soc. Am. B-Opt. Phys. 36(2), 401–407 (2019)

    Article  Google Scholar 

  10. Huang, Y., et al.: Actively tunable fano resonance based on a bowtie-shaped black phosphorus terahertz sensor. Nanomaterials 11(6), 1442 (2021)

    Article  Google Scholar 

  11. Chauhan, D., et al.: Subwavelength plasmonic liquid sensor using Fano resonance in a ring resonator structure. Optik 223, 165545 (2020)

    Article  Google Scholar 

  12. Krishnamoorthy, R., Soubache, I.D., Farmani, A.: Exploring surface plasmon resonance ring resonator structure for high sensitivity and ultra-high-Q optical filter with FDTD method. Opt. Quantum Electron. 54(2), 1–13 (2022)

    Article  Google Scholar 

  13. Chen, X.H.: Synthesis of multi-band filters based on multi-prototype transformation. IET Microwaves Antennas Propag. 15(2), 103–114 (2021)

    Article  Google Scholar 

  14. Khani, S., A. Farmani, and P. Rezaei.: Optical resistance switch for optical sensing. Artificial Intelligence in Mechatronics and Civil Engineering, p. 1–38, (2023)

  15. Stern, L., Grajower, M., Levy, U.: Fano resonances and all-optical switching in a resonantly coupled plasmonic-atomic system. Nature Commun. 5(1), 4865 (2014)

    Article  Google Scholar 

  16. Degheidy, A.R., Elkenany, E.B., Alfrnwani, O.A.: Influence of composition, temperature and pressure on the optoelectronic and mechanical properties of InPxSb1-x alloys. Comput. Condens. Matter. 16, 1–7 (2018)

    Google Scholar 

  17. Zangeneh, A.M.R., et al.: Enhanced sensing of terahertz surface plasmon polaritons in graphene/J-aggregate coupler using FDTD method. Diam. Related Mater. 125, 109005 (2022)

    Article  Google Scholar 

  18. Yu, Y., et al.: Research on fano resonance sensing characteristics based on racetrack resonant cavity. Micromachines 12(11), 1359 (2021)

    Article  Google Scholar 

  19. Shi, H.R., et al.: Nanosensor based on Fano resonance in a metal-insulator-metal waveguide structure coupled with a half-ring. Results Phys. 21, 103842 (2021)

    Article  Google Scholar 

  20. Chao, C.T.C., et al.: Highly sensitive and tunable plasmonic sensor based on a nanoring resonator with silver nanorods. Nanomaterials 10(7), 1399 (2020)

    Article  Google Scholar 

  21. Zafar, R., Salim, M.: Enhanced figure of merit in fano resonance-based plasmonic refractive index sensor. IEEE Sens. J. 15(11), 6313–6317 (2015)

    Article  Google Scholar 

  22. Hu, J.G., et al.: Strong longitudinal coupling of Tamm plasmon polaritons in graphene/DBR/Ag hybrid structure. Opt. Express 27(13), 18642–18652 (2019)

    Article  Google Scholar 

  23. Gai, H.F., Wang, J., Tian, Q.: Modified Debye model parameters of metals applicable for broadband calculations. Appl. Opt. 46(12), 2229–2233 (2007)

    Article  Google Scholar 

  24. Kekatpure, R.D., et al.: Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator. Opt. Express 17(26), 24112–24129 (2009)

    Article  Google Scholar 

  25. Rakhshani, M.R., Mansouri-Birjandi, M.A.: High sensitivity plasmonic refractive index sensing and its application for human blood group identification. Sens. Actuat. B-Chem. 249, 168–176 (2017)

    Article  Google Scholar 

  26. Khodadadi, M., Moshiri, S.M.M., Nozhat, N.: Theoretical analysis of a simultaneous graphene-based circular plasmonic refractive index and thickness bio-sensor. IEEE Sens. J. 20(16), 9114–9123 (2020)

    Article  Google Scholar 

  27. Rahmatiyar, M., Afsahi, M., Danaie, M.: Design of a refractive index plasmonic sensor based on a ring resonator coupled to a MIM waveguide containing tapered defects. Plasmonics 15(6), 2169–2176 (2020)

    Article  Google Scholar 

  28. Butt, M.A., Kazanskiy, N.L., Khonina, S.N.: Highly sensitive refractive index sensor based on plasmonic bow tie configuration. Photonic Sens. 10(3), 223–232 (2020)

    Article  Google Scholar 

  29. Dong, L., et al.: Effects of different concentrations of intraluminal sodium chloride solution on intracavitary ECG used for arm infusion port implantation. Sci. Rep. 12(1), 13813 (2022)

    Article  MathSciNet  Google Scholar 

  30. Lin, C.C., et al.: A sodium chloride modification of SnO2 electron transport layers to enhance the performance of perovskite solar cells. ACS Omega 6(28), 17880–17889 (2021)

    Article  Google Scholar 

  31. Xu, L.P., et al.: Ultrasensitive optical refractive index detection of NaCl and alcohol solutions based on weak value amplification. Plasmonics 15(3), 671–678 (2020)

    Article  Google Scholar 

Download references

Funding

Fundamental Research Funds for the Central Universities of China (2572021DJ05).

Author information

Authors and Affiliations

Authors

Contributions

DQ and CL wrote the paper. QW and YS provide research ideas and revision discussion for this paper.

Corresponding author

Correspondence to Chunlei Li.

Ethics declarations

Conflict of interest

The authors promise that there is no conflict of interest in this article.

Consent for publication

The authors agree to publish this article.

Ethical approval and Consent to participate

There are no ethical problems in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, D., Wu, Q., Sun, Y. et al. Research on high sensitivity fano resonance sensing based on MIM waveguide coupled with double Fibonacci spirals. J Comput Electron 22, 1500–1506 (2023). https://doi.org/10.1007/s10825-023-02069-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02069-x

Keywords

Navigation