Skip to main content
Log in

A computational method for simple design of endlessly all-silica large-mode area photonic crystal fiber for high-power laser applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper presents a simple computational method based on the normalized frequency and normalized transverse attenuation constant parameters to design endlessly single-mode and large-mode area silica photonic crystal fibers (LMA-PCFs). Our results are compared with the data obtained from the finite-difference frequency–domain (FDFD) method, a well-known and accurate method in the analysis of the propagation characteristics of optical fibers. Our calculations and simulations results show that the presented simple computational method is a fast, cost-effective, and accurate method for modeling and analysis of all-silica-based LMA-PCFs and its results can be extensively used in existing nonlinear Schrödinger equation solver tools to simulate the evolution of the optical pulses through the silica LMA-PCFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Pereira, M.V., Minkovich, V.P., Calixto, S.: Fabrication and investigation of large-mode-area photonic crystal fibers. Revista Mexicana J. 59(2013), 317–321 (2013)

    Google Scholar 

  2. Mitrofanov, A.V., Ivanov, A.A., Alfimov, M.V., Podshivalov, A.A., Zheltikov, A.M.: Microjoule supercontinuum generation by stretched megawatt femtosecond laser pulses in a large-mode-area photonic-crystal fiber. J. Opt. Commun. 280(2007), 453–456 (2007)

    Article  Google Scholar 

  3. Kumar, P.B., Kawsar, A.: Si7N3 Material filled novel heptagonal photonic crystal fiber for laser applications. J. Ceramic Int. 45(1), 1215–1218 (2018)

    Google Scholar 

  4. Rahaman, E., Hossain, M., Mondal, H.S., Saha, R., Muntaseer, A.S.: Theoretical analysis of large negative dispersion photonic crystal fiber with small confinement loss. J. Appl Optics. 59(28), 8925–8931 (2020)

    Article  Google Scholar 

  5. Hossain, M., Ahsan, S., Sikder, N., Rahman, E.: High birefringence and broadband dispersion compensation photonic crystal fiber. J. Opt. Commun., pp .0000101515–20200140. https://doi.org/10.1515/joc-2020-0140, (2021).

  6. Hossain, Md.B., Hossain, Md.M., Ali, Md.Y.: Dual-core liquid filled photonic crystal fiber coupler. Int. J. Eng. Technol. 7(4), 5712–5719 (2018)

    Google Scholar 

  7. Limpert, J., Schreiber, T., Nolte, S., Zellmer, H., Tünnermann, A., Iliew, R., Lederer, F., Broeng, J., Vienne, G., Petersson, A., Jakobsen, C.: High-power air-clad large-mode-area photonic crystal fiber laser. Opt. Express 11(7), 818–823 (2003)

    Article  Google Scholar 

  8. Zhao, Q., Qu, J., Peng, G., Yu, C.: Endless single-mode photonics crystal fiber meta lens for broadband and efficient focusing in near-infrared range. J. Micromach. 12(2), 219–222 (2021)

    Article  Google Scholar 

  9. Cherif, R., Zghala, M., Nikolov, I., Danailov, M.: High energy femtosecond supercontinuum light generation in large mode area photonic crystal fiber. Opt. Commun. 283(21), 4378–4382 (2010)

    Article  Google Scholar 

  10. Saghaei, H.: Modelling highly nonlinear photonic crystal fibers for ultrabroadband supercontinuum generation. PhD thesis, Azad University, Science and Research Branch, pp 1–142 (2015).

  11. Zhu, Z., Brown, T.: Full vectorial finite difference analysis of microstructured optical fibers. J. Opt. Express 10, 853–864 (2002)

    Article  Google Scholar 

  12. Kabir, S., Khandokar, M.R.H., Khan, M.A.G.: Design of triangular core LMA-PCF with low-bending loss and low non-linearity for laser application. J.Opt. Laser Technol. 81(2016), 84–89 (2016)

    Article  Google Scholar 

  13. Rashidi, K., Mirjalili, S.M., Taleb, H., Fathi, D.: Optimal design of large mode area photonic crystal fibers Using a multi objective gray wolf optimization technique. J. Light Wave Technol. 36(23), 5626–5632 (2018)

    Article  Google Scholar 

  14. Zhang, X., Gao, S., Wang, Y., Ding, W.: Design of large mode area all-solid anti-resonant fiber for high-power lasers. Published online by Cambridge University Press, Vol. 9, pp 1–5 (2021).

  15. Naïf, R.M.: Design and analysis of large pitch photonic crystal fibers for robust single mode operation. J. Karbala Univ. 12(4), 180–188 (2014)

    Google Scholar 

  16. Chen, Y., Zhao, N., Liu, J., Xiao, M., Zhu, K., Liu, G., Zou, Z., Hou, C., Xia, Y., Zheng, Z., Chen: Yb3+-doped large-mode-area photonic crystal fiber for fiber lasers prepared by laser sintering technology, journal of optical material expresses. 9(3), 1356–1364, (2019).

  17. Kumar, P., Fiaboe, K.F., Roy, J.S.: Highly birefringent do-octagonal photonic crystal fibers with ultra-flattened zero dispersion for supercontinuum generation. J. Microw. Optoelectron. Electromagn. Appl., 18(1), 80–95 (2019)

    Article  Google Scholar 

  18. Scheuner, J., Heidt, A.M., Pilz, S., Raisin, P., Sayed, A.E., Najafi, H., Ryser, M., Feurer, T., Romano, V.: Advances in optical fibers fabricated with granulated silica, Optical Fiber Communications Conference and Exhibition (OFC), pp.1–3 (2017).

  19. Chu, Y., Yang, Y., Hu, X., Chen, Z., Ma, Y., Liu, Y., Wang, Y., Liao, L., Xing, Y., Li, H., Peng, J., Dai, N., Li, J., Yang, L.: Yb3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology. J. Opt. Express 25(20), 24061–24067 (2017)

    Article  Google Scholar 

  20. Scheuner, J., Heidt, A. M., Pilz, S., Raisin, P., Sayed, A. E., Najafi, H., Ryser, M., Feurer, T., Romano, V.: Advances in optical fibers fabricated with granulated silica. Optical Fiber Communications Conference and Exhibition (OFC), pp. 1–3 (2017).

  21. Ghanbaria, A., Kashaninia, A., Sadr, A., Saghaei, H.: A comparative study of multipole and empirical relations methods for effective index and dispersion calculations of Silica based photonic crystal fibers. J. Commun. Eng. 8(1), 93–103 (2019)

    Google Scholar 

  22. Ghanbari, A., Sadr, A., Tat Hesari, H.: Modeling photonic crystal fiber for efficient soliton-effect compression of femtosecond optical pulses at 850 nm. Arab. J. Sci. Eng. 39(2014), 3917–3923 (2012).

  23. Ghanbari, A., Kashani Nia, A., Sadr, A.: Square lattice elliptical-core photonic crystal fiber soliton-effect compressor at 1550nm. J.Ccommu. Eng. 4(1), 29–39 (2015).

  24. Jetschke, S., Röpke, U.: Power-law dependence of the photo darkening rate constant on the inversion in Yb doped fibers. J. Opt. Lett. 34(1), 109–111 (2009)

    Article  Google Scholar 

  25. Saitoh, K., Koshiba, M.: Empirical relations for simple design of photonic crystal fibers. J. Optic Express 13(1), 267–274 (2005)

    Article  Google Scholar 

  26. Nielsen, M.D., Mortensen, N.A.: Photonic crystal fiber design based on the V-parameter. J. Opt. Soc. Am. 11(21), 2762–2768 (2003)

    Google Scholar 

  27. Medjouri, A., Abed, D., Becer, Z.: Numerical investigation of a broadband coherent supercontinuum generation in Ga8Sb32S60 chalcogenide photonic crystal fiber with all-normal dispersion. Opto Elecron. Rev. 27, 1–9 (2019).

  28. Hussain, M., Manniruzzaman.: Study of Confinement Loss in Photonic Crystal Fiber. In: International Conference on Materials, Electronics & Information Engineering, ICMEIE, university of Rajshahi, Bangladesh (2015).

  29. Saitoh, K., Koshiba, M.: Numerical modeling of photonic crystal fiber. J. Lightwave Technol. 23(2005), 3580–3591 (2005)

    Article  Google Scholar 

  30. Ghanbari, A., Kashaninia, A., Sadr, A., Saghaei, H.: Supercontinuum generation for optical coherence tomography using magnesium fluoride photonic crystal fiber. J. Optik 140(2017), 545–554 (2017)

    Article  Google Scholar 

  31. Ghanbari, A., Kashaninia, A., Sadr, A., Saghaei, H.: Supercontinuum generation with femtosecond optical pulse compression in silicon photonic crystal fibers at 2500 nm. J. Opt. Quantum Electron. 50(411), 1–12 (2018)

    Google Scholar 

  32. Shen, Y., Voronin, A.A., Zheltikov, A.M., Connor, S.P.O., Yakovlev, V.V., Sokolov, A.V., Scully, M.O.: Picosecond supercontinuum generation in large mode area photonic crystal fibers for coherent anti-Stokes Raman scattering micro spectroscopy. J. Sci Rep. 8(9526), 1–8 (2018)

    Google Scholar 

  33. Ma, Y., Wan, R., Li, S., Yang, L., Wang, P.: Advances in silica-based large mode area and polarization-maintaining photonic crystal fiber research. Materials 15(4), 1150–1158 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been done in Nano-photonics and Optoelectronics Research Laboratory (NORLab) and the authors would like to thank Shahid Rajaee Teacher Training University for supporting of this research project.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Olyaee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari, A., Olyaee, S. A computational method for simple design of endlessly all-silica large-mode area photonic crystal fiber for high-power laser applications. J Comput Electron 22, 704–715 (2023). https://doi.org/10.1007/s10825-023-02013-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02013-z

Keywords

Navigation