Skip to main content
Log in

Electronic structure, elastic and magnetic properties of the binary intermetallics RFe2 (R = Eu, Gd and Tb)

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Laves-phase (C15) binary intermetallics RFe2 (R = Eu, Gd and Tb) are studied using various potentials in the domain of density functional theory (DFT). These intermetallics are highly correlated electron systems, and the hybrid functional is found to be an effective tool for properly studying these systems. The calculated structural parameters are in close agreement with the experimental values. A decrease in the lattice constants is observed sequentially in the order Eu → Gd → Tb due to the lanthanide shielding effect. The electronic band profiles demonstrate that all these compounds are metallic. The electrical resistivity values confirm the DFT band profiles and reveal that these intermetallics are good conductors. The calculated elastic properties reveal the incompressible and ductile nature of the compounds. The optimized energies in different magnetic phases by DFT and magnetic susceptibility by post-DFT calculations demonstrate the ferromagnetic nature of these intermetallics. Based on these physical properties, the compounds can be considered as candidates for spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons.

References

  1. Jiles, D.C.: Recent advances and future directions in magnetic materials. Acta. Mater. 51, 5907–5939 (2003). https://doi.org/10.1016/j.actamat.2003.08.011

    Article  Google Scholar 

  2. Russelll, M.: Ductility in intermetallic compound. Adv. Eng. Mater. 5, 629–639 (2003). https://doi.org/10.1002/adem.200310074

    Article  Google Scholar 

  3. Gogotsi, Y., Nikitin, A., Ye, H., Zhou, W., Fischer, J.E., Yi, B., Foley, H.C., Barsoum, M.W.: Nanoporous carbide-derived carbon with tunable pore size. Nat. Mater. 2, 591–594 (2003). https://doi.org/10.1038/nmat957

    Article  Google Scholar 

  4. Zhang, Z., Russell, A.M., Biner, S.B., Gschneidner, J., Lo, C.C.H.: Fracture toughness of polycrystalline YCu, DyCu, and YAg. Intermetalics 13(5), 559–564 (2005)

    Article  Google Scholar 

  5. Lomenick, T.F., Bradshaw, R.L.: Deformation of rock salt in openings mined for the disposal of radioactive wastes. Rock. Mech. 1(1), 5–29 (1969). https://doi.org/10.1007/bf01247355

    Article  Google Scholar 

  6. Pecharsky, V.K., Gschneidner, K.A., Jr.: Magneto caloric effect and magnetic refrigeration. J. Mag. Mag. Mater. 200, 44–56 (1999). https://doi.org/10.1016/S0304-8853(99)00397-2

    Article  Google Scholar 

  7. Bruck, E.: Developments in magneto caloric refrigeration. J. Appl. Phys. 38, 381–391 (2005). https://doi.org/10.1088/0022-3727/38/23/R01

    Article  Google Scholar 

  8. Pecharsky, V.K., Holm, A.P., Gschneidne, J.K.A., Rink, R.: Massive magnetic-field induced structural transformation in Gd5Ge4 and the nature of the giant magneto caloric effect. Phys. Rev. Lett. 91, 197204–197208 (2003). https://doi.org/10.1103/PhysRevLett.91.072304

    Article  Google Scholar 

  9. Gschneidner, J.K.A.: The fruition of 4f discovery, the interplay of basic and applied research. J. Alloys. Comp. 344, 356–361 (2002). https://doi.org/10.1016/S0925-8388(02)00385-7

    Article  Google Scholar 

  10. Rahaman, Z., Rahman, A.: Investigation on the physical properties of two laves phase compounds by HRh2 (H = Ca and La): A DFT study. Int. J. Mod. Phys. B 32, 1–16 (2018). https://doi.org/10.1142/S0217979218501497

    Article  Google Scholar 

  11. Buckingham, A.R.: Modifying the magnetic properties of laves phase intermetallic multilayers and films by nano-patterning and ion implantation. University of Southampton, UK (2010)

    Google Scholar 

  12. Naubauer, D., Pronin, A.V., Zapf, S., Merz, J., Jevan, H.S., Jiao, W.H., Gegenwart, P., Cao, G.H., Dressel, M.: Optical properties of superconducting EuFe2 (As1-xPx)2. Phys Status Solidi B (2016). https://doi.org/10.1002/pssb.201600148

    Article  Google Scholar 

  13. Ren, Z., Tao, Q., Jiang, S., Feng, C., Wang, C., Dai, J., Cao, G., Xu, Z.: Superconductivity induced by phosphorus doping and its coexistencewith ferromagnetism in EuFe2(As0.7P0.3)2. Phys Rev Lett (2009). https://doi.org/10.1103/PhysRevLett.102.137002

    Article  Google Scholar 

  14. Melalfy, G., Shabara, R.M., Aly, S.H., Yehia, S.H.: First principles study of magnetic, electronic, elastic and thermal properties of GdFe2. Comput. Cond. Mater. 5, 24–29 (2015). https://doi.org/10.1016/j.cocom.2015.10.001

    Article  Google Scholar 

  15. Bentouaf, A., Mabsout, R., Rached, H., Amari, S., Reshak, A.H., Aissa, B.: Theoretical investigation of the structural, electronic, magnetic and elastic properties of binary cubic C15-Laves phases TbX2(X = Co and Fe). J. Alloys. Comp. 689, 885–893 (2016). https://doi.org/10.1016/j.jallcom.2016.08.046

    Article  Google Scholar 

  16. Chelvane, J.A., Kasiviswanathan, S., Rao, M.V., Markandeyulu, G.: Magnetic properties of ball-milled TbFe2 and TbFe2B. Bull Mater Sci 27, 169–173 (2004)

    Article  Google Scholar 

  17. Gao, T., Qi, N., Zhang, Y., Zhou, T.: Magnetic properties and large magnetocaloric effect in Laves phase metallic compound. J. Phys Conf. series. (2014). https://doi.org/10.1088/1742-6596/568/4/042006

    Article  Google Scholar 

  18. Murtaza, A., Yang, S., Zhou, C., Song, X.: Influence of Tb on easy Magnetization direction and magnetostriction of Ferromagnetic Laves Phase GdFe2 compounds. Chin. Phys. B (2016). https://doi.org/10.1088/1674-1056/25/9/096107

    Article  Google Scholar 

  19. Liu, C.T., Zhu, J.H., Brady, M.P., McKamey, C.G., Pike, L.M.: Physical metallurgy and mechanical properties of transition-metal Laves phase alloys. Intermetallics 8, 1119–1129 (2008). https://doi.org/10.1016/S0966-9795(00)00109-6

    Article  Google Scholar 

  20. Blaha, P., Schwarz, K., Tran, F., Laskowski, R., Madsen, G.K.H., Marks, L.D.: WIEN2k: an augmented plane waves plus local orbitals program for calculating the properties of solid. J. Chem. Phys. (2020). https://doi.org/10.1063/1.5143061@jcp.2020.ESS2020

    Article  Google Scholar 

  21. Kohn, W., Sham, L.J.: Self-consistent equation including exchange and correlation effect. Phys. Rev. 140, A1133–A1138 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  MathSciNet  Google Scholar 

  22. Perdew, J.P., Bruke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  23. Anisimov, V.I., Solovyev, I.V., Korotin, M.A., Czyzyk, M.T., Sawatzky, G.A.: Density-functional theory and NiO Photoemission spectra. Phys Rev B (1993). https://doi.org/10.1103/PhysRevB.48.16929

    Article  Google Scholar 

  24. Petukhov, A.G., Mazin, I.I.: Correlated metal and the LDA+U method. Phys. Rev. B 67, 153106 (2003). https://doi.org/10.1103/PhysRevB.67.153106

    Article  Google Scholar 

  25. Anisimov, V.I., Gunnarsson, O.: Density-functional calculation of effective Coulomb interaction in metals. Phys Rev B (1991). https://doi.org/10.1103/PhysRevB.43.7570

    Article  Google Scholar 

  26. Novak, P., Kunes, J., Chaput, L., Pickett, W.E.: Exact exchange for correlated electrons. Phys. Stat. Sol. B. 243, 563–572 (2006). https://doi.org/10.1002/pssb.200541371

    Article  Google Scholar 

  27. Charpin, T.: A package for calculating elastic tensors of cubic phase using WIEN (Laboratory of Geometrix F-75252 Paris, France, 2001)

  28. Madsen, G.K.H., Singh, D.J.: BoltzTrap. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)

    Article  Google Scholar 

  29. Birch, F.: Finite elastic strain of cubic crystals. Phys. Rev. 71(11), 809–824 (1947)

    Article  Google Scholar 

  30. Taylor, K.N.R.: Intermetallic rare-earth compounds. Adv. Phys. 2, 551–660 (1970). https://doi.org/10.1080/00018737100101311

    Article  Google Scholar 

  31. Villars, P.: Pearson’s Handbook of Crystallografic data for Intermetallic phases, Material park ASM international (1997)

  32. Mansey, R.C., Raynor, G.V., Harris, I.R.: Rare-earth intermediate phases VI Pseudo-binary systems between cubic laves phases formed by rare-earth metals with iron, cobalt, nickle, aluminium and rhodium. J. Less Common Mater 14(3), 337–347 (1968)

    Article  Google Scholar 

  33. Buschow, J., Van Stappler, R.P.: Magnetic properties of some cubic rare-earth-iron compounds of the type RFe2 and RxY1−xFe2. J. Appl. Phys. 41(10), 4066–4069 (1970). https://doi.org/10.1063/1.1658412

    Article  Google Scholar 

  34. Ahmadzai, Y., Soti, V., Ravan, B.A.: DFT calculation on theelectronic structure of GdM2 (M = Fe, Co and Ni) intermetallic compound. Adv. Studies theor. Phys. 3, 265–271 (2009)

    Google Scholar 

  35. Zegaoh, B., Benkhettou, N., Rached, D., Reshak, A.H., Benalia, S.: Electronic structure of GdX2 (X = Fe, Co and Ni) intermetallic compounds studied by the GGA + U method. Comput. Mater. Sci. 84, 172–177 (2014). https://doi.org/10.1016/j.commatsci.2014.02.005

    Article  Google Scholar 

  36. Huanga, J., Zhonga, H., Xiaa, X., Hea, W., Zhua, J., Denga, J., Zhuang, Y.: Phase equilibrium of the Gd–Fe–Co system at 873 K. J. Alloys. Compd. 471, 74–77 (2009). https://doi.org/10.1016/j.jallcom.2008.03.065

    Article  Google Scholar 

  37. Duan, Y.H., Sun, Y., Peng, M.J., Guo, Z.Z.: First principles investigation of the binary intermetallics in Pb-Mg-Al alloy: stability, elastic properties and electronic structure. Sol. State. Sci. 13, 455–459 (2011)

    Article  Google Scholar 

  38. Daouda, S., Loucif, K., Bioud, N., Lebgaa, N.: First-principles study of structural, elastic and mechanical properties of zinc-blende boron nitride (B3-BN). Acta Physica Polonica A 122, 109–115 (2012)

    Article  Google Scholar 

  39. Yakoubi, A., Baraka, O., Bouhafs, B.: Structural and electronic properties of the laves phase based on rare earth type BaM2 (M= Rh, Pd, Pt). Results Phys. 2, 58–65 (2012). https://doi.org/10.1016/j.rinp.2012.06.001

    Article  Google Scholar 

  40. Verma, J.K.D., Nag, B.D.: On the elastic moduli of a crystal and voigt and reuss relations. J. Phys. Soc. Japan 20(4), 635–636 (2007). https://doi.org/10.1143/JPSJ.20.635

    Article  Google Scholar 

  41. Hill, R.: The elastic behaviour of a crystalline aggregate. Proc Phys Soc A 65(5), 349–354 (1952)

    Article  Google Scholar 

  42. Pugh, S.F.: XCII Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, London Edinburgh Dublin Philos. Mag J. Sci 45(367), 823–843 (1954)

    Article  Google Scholar 

  43. Frantsevich, I. N., Voronov F. F., and. Bakuta, S. A.: Handbook on Elastic Constants and Moduli of Elasticity for Metals and Nonmetals, Naukova Dumka Kiev (1982)

  44. Pettifor, D.G.: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8(4), 345–349 (1992). https://doi.org/10.1179/mst.1992.8.4.345

    Article  Google Scholar 

  45. Kleinman, L.: Deformation potentials in silicon. I uniaxial strain. Phys. Rev. 128(6), 2614–2621 (1962)

    Article  Google Scholar 

  46. Mogulkoc, Y., Ciftci, Y. O., Kabak, M., Colakoglu, K.: First-principles study of structural, elastic and electronic properties of NdTe2 and TlNdTe2, Sci. J (CSJ), 34 (3), 12–28 (2013). https://doi.org/10.17776/CSJ.28334

  47. Bannikov, V.V., Shein, I.R., Ivanovskii, A.L.: Elastic and electronic properties of hexagonal rhenium sub-nitrides Re3N and Re2N in comparison with hcp-Re and wurtzite-like rhenium mononitride ReN. Phys Status Solidi (b) 248(6), 1369–1374 (2011)

    Article  Google Scholar 

  48. Li, X., Zhao, J., Xu, J.: Mechanical properties of bcc Fe-Cr alloys by first-principles simulations. Front. Phys. 7(3), 360–365 (2012). https://doi.org/10.1007/s11467-011-0193-0

    Article  Google Scholar 

  49. Jamal, M., Asadabadi, S.J., Ahmad, I., Aliabad, H.A.R.: Elastic constants of cubic crystals. Comput. Mater. Sci. 95, 592–599 (2014). https://doi.org/10.1016/j.commatsci.2014.08.027

    Article  Google Scholar 

  50. Gupta, D.C., Singh, S.K.: Structural phase transition, elastic and electronic properties of TmSb and YbSb: A LSDA+ U study under pressure. J. Alloys Compd. 515, 26–31 (2012). https://doi.org/10.1016/j.jallcom.2011.09.098

    Article  Google Scholar 

  51. Vaitheeswaran, G., Kanchana, V., Heathman, S., Idiri, M., Bihan, T.L., Svane, A., Delin, A., Johansson, B.: Elastic constants and high-pressure structural transitions in lanthanum monochalcogenides from experiment and theory. Phys. Rev. B (2007). https://doi.org/10.1103/PhysRevB.75.184108

    Article  Google Scholar 

  52. Liua, X.B., Altounian, Z.: Exchange interaction in GdT2 (T = Fe Co, Ni) from first-principles. J Appl Phys (2010). https://doi.org/10.1063/1.3365594

    Article  Google Scholar 

  53. Stearns, M. B.: “Numerical data and functional relationships in science and technology, H. P. J. Wijn, Landoilt-bornstein New series Group 3(19), Springer. Berlin (1986).

  54. Saini, S.M., Singh, N., Nautiyal, T., Auluck, S.: Comparative study of optical and magneto -optical properties of GdFe2 and GdCo2. J Phys Condens Mater (2007). https://doi.org/10.1088/0953-8984/19/17/176203

    Article  Google Scholar 

  55. Blundell, S.: Magnetism in condensed matter. Oxford University Press, New York (2001)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahid Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafoor, N., Ali, Z., Mehmood, S. et al. Electronic structure, elastic and magnetic properties of the binary intermetallics RFe2 (R = Eu, Gd and Tb). J Comput Electron 21, 561–570 (2022). https://doi.org/10.1007/s10825-022-01877-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-01877-x

Keywords

Navigation