Skip to main content
Log in

Plasmonic all-optical metal–insulator–metal switches based on silver nano-rods, comprehensive theoretical analysis and design guidelines

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, all-optical plasmonic switches are proposed and analyzed. These structures consist of a rectangular resonator filled with a Kerr-type material (AuSiO2) which is coupled to isolated metal–insulator–metal plasmonic waveguides. The resonators contain periodic arrays of nano-rods with rectangular and triangular patterns. The horizontal and vertical waveguides are used for data and control signals, respectively. Using two separate paths for the data and control signals results in suitable isolation between the signals. The finite difference time domain (FDTD) method is used for numerical investigation of the designed structures. To provide more insight, the FDTD results of the building blocks of the switches are compared with transmission line method results. The most important benefits of the proposed topologies are requiring lower pump intensities, needing smaller footprints and having isolated data and control ports. The proposed switch needs a pump intensity equal to 193.2 mW/μm2 and requires a 0.593 μm2 footprint area. A 11.3 dB contrast ratio exists between the On and Off states of the switch. Based on the mentioned advantages, these switches have the potential to be used in complex integrated optical circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

source for a Switch I and b Switch II

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Danaie, M., Kaatuzian, H.: Bandwidth improvement for a photonic crystal optical Y-splitter. J. Opt. Soc. Korea 15(3), 283–288 (2011)

    Google Scholar 

  2. Danaie, M., Attari, A.R., Mirsalehi, M.M., Naseh, S.: Optimization of two-dimensional photonic crystal waveguides for TE and TM polarizations. Optica. Applicata. 38(4), 643–655 (2008)

    Google Scholar 

  3. Foghani, S., Kaatuzian, H., Danaie, M.: Simulation and design of a wideband T-shaped photonic crystal splitter. Optica. Applicata. 40(4), 863–872 (2010)

    Google Scholar 

  4. Swarnakar, S., Kumar, S., Sharma, S.: Performance analysis of all-optical full-adder based on two-dimensional photonic crystals. J. Comput. Electron. 17(3), 1124–1134 (2018)

    Google Scholar 

  5. Danaee, E., Geravand, A., Danaie, M.: Wide-band low cross-talk photonic crystal waveguide intersections using self-collimation phenomenon. Opt. Commun. 431, 216–228 (2019)

    Google Scholar 

  6. Farmani, A., Mir, A., Irannejad, M.: 2D-FDTD simulation of ultra-compact multifunctional logic gates with nonlinear photonic crystal. JOSA B 36(4), 811–818 (2019)

    Google Scholar 

  7. Danaie, M., Nasirifar, R., Dideban, A.: Design of adjustable T-shaped and Y-shaped photonic crystal power splitters for TM and TE polarizations. Turkish J. Electrical Eng. Comput. Sci. 25(5), 4398–4408 (2017)

    Google Scholar 

  8. Saghaei, H., Zahedi, A., Karimzadeh, R., Parandin, F.: Line defects on As2Se3-Chalcogenide photonic crystals for the design of all-optical power splitters and digital logic gates. Superlattices. Microstruct. 110, 133–138 (2017)

    Google Scholar 

  9. Moradi, M., Danaie, M., Orouji, A.A.: Design and analysis of an optical full-adder based on nonlinear photonic crystal ring resonators. Optik 172, 127–136 (2018)

    Google Scholar 

  10. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)

    Google Scholar 

  11. Sellai, A., Elzain, M.: Characteristics of a dielectric–metal–dielectric plasmonic waveguide. Physica. E. 41(1), 106–109 (2008)

    Google Scholar 

  12. Khani, S., Danaie, M., Rezaei, P.: Miniaturized microstrip dual-band bandpass filter with wide upper stop-band bandwidth. Analog. Integr. Circ. Sig. Process 98(2), 367–376 (2019)

    Google Scholar 

  13. Khani, S., Mousavi, S.M.H., Danaie, M., Rezaei, P.: Tunable compact microstrip dual-band bandpass filter with tapered resonators. Microwave Opt Tech Letters 60(5), 1256–1261 (2018)

    Google Scholar 

  14. Khani, S., Hayati, M.: Compact microstrip lowpass filter with wide stopband and sharp roll-off. Microw. J. 60(11), 86–92 (2017)

    Google Scholar 

  15. Khani, S., Danaie, M., Rezaei, P., Shahzadi, A.: Compact ultra-wide upper stopband microstrip dual-band BPF using tapered and octagonal loop resonators. Frequenz 74(1–2), 1–11 (2019)

    Google Scholar 

  16. Zeng, D., Zhang, L., Xiong, Q., Ma, J.: Directional coupler based on an elliptic cylindrical nanowire hybrid plasmonic waveguide. Appl. Opt. 57(16), 4701–4706 (2018)

    Google Scholar 

  17. Petráček, J.: Nonlinear directional coupling between plasmonic slot waveguides. Appl. Phys. B 112(4), 593–598 (2013)

    Google Scholar 

  18. Huang, B., Meng, H., Wang, Q., Wang, H., Zhang, X., Yu, W., Wang, F.: Plasmonic-induced transparency and slow-light effect based on stub waveguide with nanodisk resonator. Plasmonics 11(2), 543–550 (2016)

    Google Scholar 

  19. Wang, G., Zhang, W., Gong, Y., Liang, J.: Tunable slow light based on plasmon-induced transparency in dual-stub-coupled waveguide. IEEE Photonics Technol. Lett. 27(1), 89–92 (2014)

    Google Scholar 

  20. Tian, M., Lu, P., Chen, L., Liu, D., Peyghambarian, N.: Plasmonic Bragg reflectors based on metal-embedded MIM structure. Opt. Commun. 285(24), 5122–5127 (2012)

    Google Scholar 

  21. Shafagh, S.G., Kaatuzian, H., Danaie, M.: Analysis, design and simulation of MIM plasmonic filters with different geometries for technical parameters improvement. Commun. Theor. Phys. 72(8), 085502 (2020)

    MathSciNet  Google Scholar 

  22. Jiang, C., Liang, S., Wan, L., Du, K., Zhang, W., Li, Z., Mei, T.: Plasmonic color filter based on a hetero-metal-insulator-metal grating. Appl. Opt. 59(14), 4432–4436 (2020)

    Google Scholar 

  23. Janfaza, M., Mansouri-Birjandi, M.A., Tavousi, A.: Tunable plasmonic band-pass filter based on Fabry-Perot graphene nanoribbons. Appl. Phys. B 123(10), 262 (2017)

    Google Scholar 

  24. Nasirifar, R., Danaie, M., Dideban, A.: Hollow-core graded index optical fiber refractive index sensor based on surface plasmon resonance. Opt. Quant. Electron. 52(7), 1–23 (2020)

    Google Scholar 

  25. Kaur, V., Singh, S.: A dual-channel surface plasmon resonance biosensor based on a photonic crystal fiber for multianalyte sensing. J. Comput. Electron. 18(1), 319–328 (2019)

    Google Scholar 

  26. Nasirifar, R., Danaie, M., Dideban, A.: Dual channel optical fiber refractive index sensor based on surface plasmon resonance. Optik 186, 194–204 (2019)

    Google Scholar 

  27. Khani, S., Danaie, M., Rezaei, P.: Double and triple-wavelength plasmonic demultiplexers based on improved circular nanodisk resonators. Opt. Eng. 57(10), 107102 (2018)

    Google Scholar 

  28. Wu, C.T., Huang, C.C., Lee, Y.C.: Plasmonic wavelength demultiplexer with a ring resonator using high-order resonant modes. Appl. Opt. 56(14), 4039–4044 (2017)

    Google Scholar 

  29. Hajshahvaladi, L., Kaatuzian, H., Danaie, M.: Design and analysis of a plasmonic demultiplexer based on band-stop filters using double-nanodisk-shaped resonators. Opt. Quant. Electron. 51(12), 391 (2019)

    Google Scholar 

  30. Gogoi, N., Sahu, P.P.: All-optical tunable power splitter based on a surface plasmonic two-mode interference waveguide. Appl. Opt. 57(10), 2715–2719 (2018)

    Google Scholar 

  31. Wen, K., Hu, Y., Chen, L., Zhou, J., Lei, L., Meng, Z.: Plasmonic bidirectional/unidirectional wavelength splitter based on metal-dielectric-metal waveguides. Plasmonics 11(1), 71–77 (2016)

    Google Scholar 

  32. Danaie, M., Geravand, A.: Design of low-cross-talk metal–insulator–metal plasmonic waveguide intersections based on proposed cross-shaped resonators. J. Nanophotonics 12(4), 046009 (2018)

    Google Scholar 

  33. Wen, K., Yan, L., Hu, Y., Chen, L., Lei, L.: A plasmonic wavelength-selected intersection structure. Plasmonics 9(3), 685–690 (2014)

    Google Scholar 

  34. Kaboli, M., Akhlaghi, M.: Investigating the optical AND gate using plasmonic nano-spheres. J. Comput. Electron. 15(1), 295–300 (2016)

    Google Scholar 

  35. Moradi, M., Danaie, M., Orouji, A.A.: Design of all-optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators. Opt. Quant. Electron. 51(5), 154 (2019)

    Google Scholar 

  36. Kumar, S., Singh, L., Raghuwanshi, S.K.: Design of plasmonic half-adder and half-subtractor circuits employing nonlinear effect in Mach-Zehnder interferometer. J. Comput. Electron. 16(1), 139–147 (2017)

    Google Scholar 

  37. Vahed, H., Ahmadi, S.S.: Graphene-based plasmonic electro-optic modulator with sub-wavelength thickness and improved modulation depth. Appl. Phys. B 123(11), 265 (2017)

    Google Scholar 

  38. Emami, F., Akhlaghi, M., Nozhat, N.: Binary optimization of gold nano-rods for designing an optical modulator. J. Comput. Electron. 14(2), 574–581 (2015)

    Google Scholar 

  39. Khani, S., Danaie, M., Rezaei, P.: Hybrid All-Optical Infrared Metal Insulator Metal Plasmonic Switch Incorporating Photonic Crystal Bandgap Structures. Photonics Nanostruct Fundam Appl. 40, 100802 (2020)

    Google Scholar 

  40. Khani, S., Danaie, M., Rezaei, P.: All-optical plasmonic switches based on asymmetric directional couplers incorporating Bragg gratings. Plasmonics 15(3), 869–879 (2019). https://doi.org/10.1007/s11468-019-01106-5

    Article  Google Scholar 

  41. Babaei, M., Zarifkar, A., Miri, M.: Compact and broadband 2×2 optical switch based on hybrid plasmonic waveguides and curved directional couplers. Appl. Opt. 59(4), 975–984 (2020)

    Google Scholar 

  42. Khani, S., Danaie, M., Rezaei, P.: Tunable single-mode bandpass filter based on metal–insulator–metal plasmonic coupled U-shaped cavities. IET Optoelectron. 13(4), 161–171 (2019)

    Google Scholar 

  43. Xu, H., Xiao, G., Xiao, W., Chen, Q.: Tunable multimode plasmonic filter based on asymmetric dual side-coupled U-shape cavities resonators. Optik 182, 324–330 (2019)

    Google Scholar 

  44. Wu, T., Cao, W.: A multifunction filter based on plasmonic waveguide with double-nanodisk-shaped resonators. Optik 127(20), 8976–8982 (2016)

    Google Scholar 

  45. Danaie, M., Kaatuzian, H.: Improvement of power coupling in a nonlinear photonic crystal directional coupler switch. Photonics Nanostruct. Fundam. Appl. 9(1), 70–81 (2011)

    Google Scholar 

  46. Beggs, D.M., White, T.P., Cairns, L., O’Faolain, L., Krauss, T.F.: Demonstration of an integrated optical switch in a silicon photonic crystal directional coupler. Physica. E 41(6), 1111–1114 (2009)

    Google Scholar 

  47. Danaie, M., Kaatuzian, H.: Design of a photonic crystal differential phase comparator for a Mach-Zehnder switch. J. Opt. 13(1), 015504 (2010)

    Google Scholar 

  48. Janjan, B., Fathi, D., Miri, M., Ghaffari-Miab, M.: Ultra-wideband high-speed Mach-Zehnder switch based on hybrid plasmonic waveguides. Appl. Opt. 56(6), 1717–1723 (2017)

    Google Scholar 

  49. Khani, S., Danaie, M., Rezaei, P.: Realization of a plasmonic optical switch using improved nano-disk resonators with Kerr-type nonlinearity: A theoretical and numerical study on challenges and solutions. Opt. Commun. 477, 126359 (2020)

    Google Scholar 

  50. Taheri, A.N., Kaatuzian, H.: Simulation and design of a submicron ultrafast plasmonic switch based on nonlinear doped silicon MIM waveguide. J. Comput. Commun. 1(07), 23 (2013)

    Google Scholar 

  51. Armaghani, S., Khani, S., Danaie, M.: Design of all-optical graphene switches based on a Mach-Zehnder interferometer employing optical Kerr effect. Superlattices Microstruct. 135, 106244 (2019)

    Google Scholar 

  52. Zhang, H., Chen, X., Wang, Q., Zhang, X., Chang, J., Gao, L., Li, J.: Graphene-based passively Q-switched Nd: KLu (WO 4) 2 eye-safe laser operating at 1,425 nm. Appl. Phys. B 114(3), 313–317 (2014)

    Google Scholar 

  53. Liu, X., Liu, H., Sun, Q., Huang, N.: Metamaterial terahertz switch based on split-ring resonator embedded with photoconductive silicon. Appl. Opt. 54(11), 3478–3483 (2015)

    Google Scholar 

  54. Hajizadegan, M., Fathi, D., Sakhdari, M.S.: All-optical metamaterial switch based on Kerr effect with MWCNT composite. Physica E 48, 1–6 (2013)

    Google Scholar 

  55. Ma, Y., Peng, Z., Ding, S., Peng, F., Zhang, Q., Yu, X.: Diode-pumped acousto-optically Q-switched laser with Nd3+ doped GdYNbO4 mixed crystal. Infrared Phys. Technol. 92, 295–298 (2018)

    Google Scholar 

  56. Tao, J., Wang, Q.J., Huang, X.G.: All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6(4), 753 (2011)

    Google Scholar 

  57. Tian, M., Lu, P., Chen, L., Liu, D., Lv, C.(2012).All-optical switching in MIM waveguide resonator with an outer portion smooth bend structure containing nonlinear optical materials. Opt. Commun.285:(21–22),4562–4566

    Google Scholar 

  58. Khani, S., Danaie, M., Rezaei, P.: Compact and low-power all-optical surface plasmon switches with isolated pump and data waveguides and a rectangular cavity containing nano-silver strips. Superlattices Microstruct. 141, 106481 (2020)

    Google Scholar 

  59. Krasavin, A.V., Zayats, A.V.: Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides. Appl. Phys. Lett. 97(4), 041107 (2010)

    Google Scholar 

  60. Taheri, A.N., Kaatuzian, H.: Design and simulation of a nanoscale electro-plasmonic 1×2 switch based on asymmetric metal–insulator–metal stub filters. Appl. Opt. 53(28), 6546–6553 (2014)

    Google Scholar 

  61. Mei, X., Huang, X.G., Jin, T.: A sub-wavelength electro-optic switch based on plasmonic T-shaped waveguide. Plasmonics 6(4), 613–618 (2011)

    Google Scholar 

  62. Qi, Z., Hu, G., Yun, B., Zhang, X., Cui, Y.: Fast response and low power consumption 1×2 thermo-optic switch based on dielectric-loaded surface plasmon polariton waveguides. J. Mod. Opt. 63(14), 1354–1363 (2016)

    Google Scholar 

  63. Pitilakis, A., Kriezis, E.E.: Longitudinal 2×2 switching configurations based on thermo-optically addressed dielectric-loaded plasmonic waveguides. J. Lightwave Technol. 29(17), 2636–2646 (2011)

    Google Scholar 

  64. Khani, S., Danaie, M., Rezaei, P.: Size reduction of MIM surface plasmon based optical bandpass filters by the introduction of arrays of silver nano-rods. Physica E 113, 25–34 (2019)

    Google Scholar 

  65. Boyd, R.W.: Nonlinear optics. Elsevier, NY (2003)

    Google Scholar 

  66. Liao, H.B., Xiao, R.F., Fu, J.S., Wang, H., Wong, K.S., Wong, G.K.L.: Origin of third-order optical nonlinearity in Au:SiO 2 composite films on femtosecond and picosecond time scales. Opt. Lett. 23(5), 388–390 (1998)

    Google Scholar 

  67. Park, J., Kim, H., Lee, B.: High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating. Opt. Express 16(1), 413–425 (2008)

    Google Scholar 

  68. Pannipitiya, A., Rukhlenko, I.D., Premaratne, M., Hattori, H.T., Agrawal, G.P.: Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Opt. Express 18(6), 6191–6204 (2010)

    Google Scholar 

  69. Liu, J., Fang, G., Zhao, H., Zhang, Y., Liu, S.: Surface plasmon reflector based on serial stub structure. Opt. Express 17(22), 20134–20139 (2009)

    Google Scholar 

  70. Pozar, D.M.: Microwave Engineering, 2nd edn, p. 566. John Wiley & Sons (1998)

  71. Veronis, G., Fan, S.: Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl. Phys. Lett. 87(13), 131102 (2005)

    Google Scholar 

  72. Collin, R.E.: Foundations for microwave engineering. Wiley, NY (2007)

    Google Scholar 

  73. Parker, M.A.: Physics of optoelectronics. CRC Press, FL (2005)

    Google Scholar 

  74. Lu, H., Liu, X., Mao, D., Wang, L., Gong, Y.: Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt. Express 18(17), 17922–17927 (2010)

    Google Scholar 

  75. Kong, Y., Lin, R., Qian, W., Wei, Q., Liu, C., Wang, S.: Active dual-wavelength optical switch-based plasmonic demultiplexer using metal-Kerr nonlinear material-metal waveguide. IEEE Photonics J. 9(4), 1–8 (2017)

    Google Scholar 

  76. Nurmohammadi, T., Abbasian, K., Yadipour, R.: Ultra-fast all-optical plasmonic switching in near infra-red spectrum using a Kerr nonlinear ring resonator. Opt. Commun. 410, 142–147 (2018)

    Google Scholar 

  77. Zhang, Z., Yang, J., He, X., Han, Y., Zhang, J., Huang, J., Xu, S.: All-optical multi-channel switching at telecommunication wavelengths based on tunable plasmon-induced transparency. Opt. Commun. 425, 196–203 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiva Khani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khani, S., Danaie, M. & Rezaei, P. Plasmonic all-optical metal–insulator–metal switches based on silver nano-rods, comprehensive theoretical analysis and design guidelines. J Comput Electron 20, 442–457 (2021). https://doi.org/10.1007/s10825-020-01638-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01638-8

Keywords

Navigation