Skip to main content
Log in

Monolayer transition-metal dichalcogenides with polyethyleneimine adsorption

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Monolayer transition-metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te) have attracted much attention for use in electronic and optical applications. Due to their sensitivity to gases, the surface of these materials has been protected by coating with polymers such as polyethyleneimine (PEI). However, the effects of such coating layers on the electronic and optical properties of MX2 are not well understood. In this work, density functional theory calculations are used to study the effects of adsorption of PEI on monolayer MX2 substrates based on the electronic and optical properties before and after PEI adsorption. The results show that the bandgap of the substrate decreases significantly upon PEI adsorption, while the optical spectra show only slight modification with a decrease of intensity at short wavelengths around 300 nm. The results also indicate that PEI adsorption results in n-type doping states in MX2 but does not deteriorate the optical properties in the visible range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang, Q., Kalantar-Zadeh, K., Andras, K., Coleman, J., Strano, M.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2012)

    Article  Google Scholar 

  2. Andre Geim, K.N., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007)

    Article  Google Scholar 

  3. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011)

    Article  Google Scholar 

  4. Splendiani, A., Sun, L., Zang, Y., Li, T., Kim, J., Chim, C.-Y., Giulia, G., Wang, F.: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271 (2010)

    Article  Google Scholar 

  5. Kumar, A., Ahluwalia, P.: Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M= Mo, W; X= S, Se, Te) from ab-initio theory: new direct band gap semiconductors. Eur. Phys. J. B 85, 18 (2012)

    Article  Google Scholar 

  6. Perkins, F.K., Friedman, A.L., Cobas, E., Campbell, P.M., Jernigan, G.G., Jonker, B.T.: Chemical vapor sensing with monolayer MoS2. Nano Lett. 13, 668 (2013)

    Article  Google Scholar 

  7. Tang, D., Kvashnin, D., Najmaei, S., Bando, Y., Kimoto, K., Koskinen, P., Ajayan, P., Yakobson, B., Sorokin, P., Lou, J., Golberg, D.: Nanomechanical cleavage of molybdenum disulphide atomic layers. Nat. Commun. 5, 3631 (2014)

    Article  Google Scholar 

  8. Coleman, J., Lotya, M., O’Neill, A., et al.: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568 (2011)

    Article  Google Scholar 

  9. Liu, N., Kim, P., Kim, J., Ye, J., Kim, S., Lee, C.: Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation. ACS Nano 8, 6902 (2014)

    Article  Google Scholar 

  10. Rhyee, J., Kwon, J., Dak, P., Kim, J., Kim, S., Park, J., Hong, Y., Song, W., Omkaram, I., Alam, M., Kim, S.: High‐mobility transistors based on large‐area and highly crystalline CVD‐Grown MoSe2 films on insulating substrates. Adv. Mater. 28, 2316 (2016)

    Article  Google Scholar 

  11. Liu, H., Jiao, L., Xie, L., Yang, F., Chen, J., Ho, W., Gao, C., Jia, J., Cui, X., Xie, M.: Molecular-beam epitaxy of monolayer and bilayer WSe2: a scanning tunneling microscopy/spectroscopy study and deduction of exciton binding energy. 2D Mater. 2, 34004 (2015)

    Article  Google Scholar 

  12. Amin, B., Kaloni, T.P., Schwingenschlogl, U.: Strain engineering of WS2, WSe2, and WTe2. RSC. Adv. 4, 34561 (2014)

    Article  Google Scholar 

  13. Zhou, W., Zou, X., Najmaei, S., Liu, Z., Shi, Y., Kong, J., Lou, J., Ajayan, P.M., Yakobson, B.I., Idrobo, J.K.: Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615 (2013)

    Article  Google Scholar 

  14. Liu, Q., Li, L., Li, Y., Gao, Z., Chen, Z., Lu, J.: Tuning electronic structure of bilayer MoS2 by vertical electric field: a first-principles investigation. J. Phys. Chem. C 116, 21556 (2012)

    Article  Google Scholar 

  15. Dolui, K., Rungger, I., Das Pemmaraju, C., Sanvito, S.: Possible doping strategies for MoS2 monolayers: an ab initio study. Phys. Rev. B 88, 75420 (2013)

    Article  Google Scholar 

  16. Liu, H., Antwi, K.K.A., Chua, S., Chi, D.: Vapor-phase growth and characterization of Mo1−xWxS2 (0 ≤ x ≤ 1) atomic layers on 2-inch sapphire substrates. Nanoscale 6, 624 (2014)

    Article  Google Scholar 

  17. Li, H., Zhang, Q., Duan, X., Wu, X., Fan, X., Zhu, X., Zhuang, X., Hu, W., Zhou, H., Pan, A., Duan, X.: Lateral growth of composition graded atomic layer MoS2(1–x)Se2x nanosheets. J. Am. Chem. Soc. 137, 5284 (2015)

    Article  Google Scholar 

  18. Mouri, S., Miyauchi, Y., Matsuda, K.: Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13, 5944 (2013)

    Article  Google Scholar 

  19. Shi, Y., Huang, J.K., Jin, L., Hsu, Y.-T., Yu, S.F., Jong Li, L., Yang, H.Y.: Selective decoration of Au nanoparticles on monolayer MoS2 single crystals. Sci. Rep. 3, 1839 (2013)

    Article  Google Scholar 

  20. Andleeb, S., Kumarsingh, A., Eom, J.: Chemical doping of MoS2 multilayer by p-toluene sulfonic acid. Sci. Technol. Adv. Mater. 16, 35009 (2015)

    Article  Google Scholar 

  21. Kiriya, D., Tosun, M., Zhao, P., Kang, J.S., Javey, A.: Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 136, 7853 (2014)

    Article  Google Scholar 

  22. Jing, Y., Tan, X., Zhou, Z., Shen, P.: Tuning electronic and optical properties of MoS2 monolayer via molecular charge transfer. J. Mater. Chem. A 2, 16892 (2014)

    Article  Google Scholar 

  23. Zhou, C.J., Yang, W.H., Wu, Y.P., Lin, W., Zhu, H.L.: Theoretical study of the interaction of electron donor and acceptor molecules with monolayer WS2. J. Phys. D Appl. Phys. 48, 285303 (2015)

    Article  Google Scholar 

  24. Yasunishi, T., Kishimoto, S., Ohno, Y.: Effect of ambient air on n-type carbon nanotube thin-film transistors chemically doped with poly (ethylene imine). Jpn. J. Appl. Phys. 53, 2 (2014)

    Article  Google Scholar 

  25. Movva, H., Ramón, M., Corbet, C.M., Sonde, S., Chowdhury, S.F., Carpenter, G., Tutuc, E., Banerjee, S.K., et al.: Self-aligned graphene field-effect transistors with polyethyleneimine doped source/drain access regions. Appl. Phys. Lett. 101, 183113 (2012)

    Article  Google Scholar 

  26. Du, Y., Liu, H., Neal, A.T., Si, M., Ye, P.D.: Molecular doping of multilayer MoS2 field-effect transistors: reduction in sheet and contact resistances. IEEE Electron Device Lett. 34, 1328 (2013)

    Article  Google Scholar 

  27. Hong, S., Yoo, G., Kim, D.H., Song, W.G., Le, O.K., Hong, Y.K., Takahashi, K., Omkaram, I., Son, D.N., Kim, S.: The doping mechanism and electrical performance of polyethylenimine‐doped MoS2 transistor. Phys. Status Solidi C 14, 1600262 (2017)

    Article  Google Scholar 

  28. Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993)

    Article  Google Scholar 

  29. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  30. Li, Y., Li, Y.L., Araujo, C.M., Luo, W., Ahuja, R.: Single-layer MoS2 as an efficient photocatalyst. Catal. Sci. Technol. 3, 2214 (2013)

    Article  Google Scholar 

  31. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)

    Article  Google Scholar 

  32. Neugebauer, J., Scheffler, M.: Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al. Phys. Rev. B 46, 16067 (1992)

    Article  Google Scholar 

  33. Bengtsson, L.: Dipole correction for surface supercell calculations. Phys. Rev. B 59, 12301 (1999)

    Article  Google Scholar 

  34. Methfessel, M., Paxton, A.T.: High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616 (1989)

    Article  Google Scholar 

  35. Gajdo, M., Hummer, K., Kresse, G., Furthmüller, J., Bechstedt, F.: Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 45112 (2006)

    Article  Google Scholar 

  36. Le, O.K., Chihaia, V., Pham Ho, M.-P., Son, D.N.: Electronic and optical properties of monolayer MoS2 under the influence of polyethyleneimine adsorption and pressure. RSC Adv. 10, 4201 (2020)

    Article  Google Scholar 

  37. Yang, D., Jiménez Sandoval, S., Divigalpitiya, W.M.R., Irwin, J.C., Frindt, R.F.: Structure of single-molecular-layer MoS2. Phys. Rev. B 43, 12053 (1991)

    Article  Google Scholar 

  38. Li, T.: Ideal strength and phonon instability in single-layer MoS2. Phys. Rev. B 85, 235407 (2012)

    Article  Google Scholar 

  39. Mendez, A.R.B., Urias Yamauchi, F.L., Terrones, M., Terrones, H.: Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons. Nanotechnology 20, 325703 (2009)

    Article  Google Scholar 

  40. Huang, H.H., Fan, X., Singh, D.J., Chen, H., Jiang, Q., Zheng, W.T.: Controlling phase transition for single-layer MTe2 (M= Mo and W): modulation of the potential barrier under strain. Phys. Chem. Chem. Phys. 18, 4086–4094 (2016)

    Article  Google Scholar 

  41. Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

    Article  Google Scholar 

  42. Tongay, S., Zhou, J., Ataca, C., Lo, K., Tyler, S.L., Jingbo, G., Jeffrey, C.W., Junqiao, : Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 12, 5576 (2012)

    Article  Google Scholar 

  43. Liu, H.-L., Shen, C.C., Su, S.H., Hsu, C.L., Li, M.Y., Li, L.: Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry. Appl. Phys. Lett. 105, 201905 (2014)

    Article  Google Scholar 

  44. Pritchard, H., Skinner, H.: The concept of electronegativity. Chem. Rev. 4, 55 (1995)

    Google Scholar 

  45. Sun, M., Chou, J.P., Gao, J., Cheng, Y., Hu, A., Tang, W., Zhang, G.: Exceptional optical absorption of buckled arsenene covering a broad spectral range by molecular doping. ACS Omega 3, 8514–8520 (2018)

    Article  Google Scholar 

  46. Sun, B., Hong, W., Thibau, E.S., Aziz, H., Lu, Z.-H., Li, Y., Appl, A.C.S.: Polyethylenimine (PEI) as an effective dopant to conveniently convert ambipolar and p-type polymers into unipolar n-type polymers. ACS Appl. Mater. Interfaces 7, 18662–18671 (2015)

    Article  Google Scholar 

  47. Wang, J., Xu, L., Zhang, B., Lee, Y.-J., Hsu, J.W.P.: n‐Type doping induced by electron transport layer in organic photovoltaic devices. Adv. Electron. Mater. 3, 1600458 (2017)

    Article  Google Scholar 

  48. Wang, Y., Slassi, A., Stoeckel, M.-A., Bertolazzi, S., Cornil, J., Beljonne, D., Samori, P.: Doping of monolayer transition-metal dichalcogenides via physisorption of aromatic solvent molecules. J. Phys. Chem. Lett. 10, 540–547 (2019)

    Article  Google Scholar 

  49. Kumar, A., Ahluwalia, P.K.: Tunable dielectric response of transition metals dichalcogenides MX2 (M= Mo, W; X= S, Se, Te): Effect of quantum confinement. Phys. B: Condens. Matter 407, 4627 (2012)

    Article  Google Scholar 

  50. Peng, Q., Wang, Z., Sa, B., Wu, B., Sun, Z.: Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci. Rep. 6, 31994 (2016)

    Article  Google Scholar 

  51. Wu, J.Y., Chen, S.C., Roslyak, O., Gumbs, G., Lin, M.F.: Plasma excitations in graphene: their spectral intensity and temperature dependence in magnetic field. ACS Nano 5, 1026–1032 (2011)

    Article  Google Scholar 

  52. Huang, B., Chuu, C., Lin, M.F.: Asymmetry-enriched electronic and optical properties of bilayer graphene. Sci. Rep. 9, 859 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Ho Chi Minh City Department of Science and Technology under contract number 310/QĐ-KHCNTT (2018). The authors acknowledge the use of computer time and software granted by the Institute of Physical Chemistry of Romanian Academy, Bucharest (HPC infrastructure developed under the projects Capacities 84 Cp/I of 15.09.2007 and INFRANANOCHEM 19/01.03.2009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Viorel Chihaia, My-Phuong Pham-Ho or Do Ngoc Son.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dien, V.K., Le, O.K., Chihaia, V. et al. Monolayer transition-metal dichalcogenides with polyethyleneimine adsorption. J Comput Electron 20, 135–150 (2021). https://doi.org/10.1007/s10825-020-01630-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01630-2

Keywords

Navigation