Skip to main content
Log in

An ab initio study of the structural and optoelectronic properties of AlxGa1−xN (x = 0, 0.125, 0.375, 0.625, 0.875, and 1) semiconductors

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The structural and optoelectronic properties of AlxGa1−xN (x = 0, 0.125, 0.375, 0.625, 0.875, and 1) semiconductors are studied in detail by applying the full-potential linearized augmented plane-wave method in density functional theory in WIEN2k software. The lattice parameter, the bulk modulus, and its pressure derivative are calculated using the Perdew–Burke–Ernzerhof generalized gradient approximation and by fitting the calculated total energy to the Murnaghan equation. These parameters are found to be in excellent agreement with experimental and theoretical results for both the GaN and AlN compounds. For the Al0.125Ga0.875N, Al0.375Ga0.625N, Al0.625Ga0.375N, and Al0.875Ga0.125N alloys, because of the lack of the theoretical and experimental data, our results can be considered as first predictions. The Tran–Blaha modified Becke–Johnson approach (TB-mBJ) is applied to determine the optoelectronic properties. The results demonstrate that GaN and the AlxGa1−xN alloys with x = 0.125, 0.375, 0.625, and 0.875 have a direct Γ–Γ bandgap, whereas the binary AlN compound has an indirect Γ–X bandgap. Furthermore, the optical properties, such as the dielectric function, refractive index, reflectivity, absorption coefficient, and energy loss function, are presented and discussed in detail; their wide bandgap means that these compounds can be applied in optoelectronic devices for application in the main parts of the ultraviolet and visible spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Davis, R.F.: III–V nitrides for electronic and optoelectronic applications. Proc. IEEE 79(5), 702–712 (1991)

    Article  Google Scholar 

  2. Nuese, C.: III–V alloys for optoelectronic applications. J. Electron. Mater. 6(3), 253–293 (1977)

    Article  Google Scholar 

  3. Nakamura, S., Chichibu, S.F.: Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes. CRC Press, Boca Raton (2000)

    Google Scholar 

  4. Ou, S.L., Wuu, D.S., Liu, S.P., Fu, Y.C., Huang, S.C., Horng, R.H.: Pulsed laser deposition of ITO/AZO transparent contact layers for GaN LED applications. Opt. Express 19(17), 16244–16251 (2011)

    Article  Google Scholar 

  5. Uchida, S., Takeya, M., Ikeda, S., Mizuno, T., Fujimoto, T., Matsumoto, O., Goto, S., Tojyo, T., Ikeda, M.: Recent progress in high-power blue-violet lasers. IEEE J. Sel. Top. Quantum Electron. 9(5), 1252–1259 (2003)

    Article  Google Scholar 

  6. Del Alamo, J.A.: Nanometre-scale electronics with III–V compound semiconductors. Nature 479(7373), 317 (2011)

    Article  Google Scholar 

  7. Mitrofanov, O., Manfra, M.: Mechanisms of gate lag in GaN/AlGaN/GaN high electron mobility transistors. Superlattice Microstruct 34(1–2), 33–53 (2003)

    Article  Google Scholar 

  8. Mishra, U.K., Shen, L., Kazior, T.E., Wu, Y.-F.: GaN-based RF power devices and amplifiers. Proc. IEEE 96(2), 287–305 (2008)

    Article  Google Scholar 

  9. Johnson, N.M., Nurmikko, A.V., DenBaars, S.P.: Blue diode lasers. Phys. Today 53(10), 31–36 (2000)

    Article  Google Scholar 

  10. Van Schalkwyk, L.: Development and Characterization of a Tuneable AlGaN-Based Solar-Blind UV-Sensitive Schottky Photodiode. University of Pretoria, Pretoria (2015)

    Google Scholar 

  11. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)

    Article  MathSciNet  Google Scholar 

  12. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964)

    Article  MathSciNet  Google Scholar 

  13. Petersen, M., Wagner, F., Hufnagel, L., Scheffler, M., Blaha, P., Schwarz, K.: Improving the efficiency of FP-LAPW calculations. arXiv preprint cond-mat/9902277 (1999)

  14. Blaha, P.: WIEN2k (Karlheinz Schwarz, Techn. Universität Wien, Austria). ISBN 3950103112 (2001)

  15. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  Google Scholar 

  16. Koller, D., Tran, F., Blaha, P.: Improving the modified Becke-Johnson exchange potential. Phys. Rev. B 85(15), 155109 (2012)

    Article  Google Scholar 

  17. Koller, D., Tran, F., Blaha, P.: Merits and limits of the modified Becke-Johnson exchange potential. Phys. Rev. B 83(19), 195134 (2011)

    Article  Google Scholar 

  18. Bouckaert, L.P., Smoluchowski, R., Wigner, E.: Theory of Brillouin zones and symmetry properties of wave functions in crystals. Phys. Rev. 50(1), 58 (1936)

    Article  MATH  Google Scholar 

  19. Liu, A.Y., Cohen, M.L.: Prediction of new low compressibility solids. Science 245(4920), 841–842 (1989)

    Article  Google Scholar 

  20. Denton, A.R., Ashcroft, N.W.: Vegard’s law. Phys. Rev. A 43(6), 3161 (1991)

    Article  Google Scholar 

  21. Vurgaftman, I., Meyer, J., Ram-Mohan, L.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89(11), 5815–5875 (2001)

    Article  Google Scholar 

  22. Li, D., Zhang, X., Zhu, Z., Zhang, H.: First-principles calculation of structural, electronic, and optical properties of zinc-blende AlxGa1−xN alloys. Solid State Sci. 13(9), 1731–1734 (2011)

    Article  Google Scholar 

  23. De Paiva, R., Alves, J., Nogueira, R., De Oliveira, C., Alves, H., Scolfaro, L., Leite, J.: Theoretical study of the AlxGa1−xN alloys. Mater. Sci. Eng. B 93(1–3), 2–5 (2002)

    Article  Google Scholar 

  24. Beloufa, A., Bensaad, Z., Soudini, B.-A., Sekkal, N., Bensaad, A., Abid, H.: First-Principles Calculations of the Structural and Electronic Properties of AIN, GaN, InN, AIGaN and InGaN, IJNeaM (2009)

  25. Kanoun, M., Merad, A., Cibert, J., Aourag, H., Merad, G.: Properties of strained zinc-blende GaN: first-principles study. J. Alloys Compd. 366(1–2), 86–93 (2004)

    Article  Google Scholar 

  26. Laref, A., Altujar, A., Luo, S.: The electronic and optical properties of InGaN-based solar cells alloys: first-principles investigations via mBJLDA approach. Eur. Phys. J. B 86(11), 475 (2013)

    Article  Google Scholar 

  27. Ramos, L., Teles, L., Scolfaro, L., Castineira, J., Rosa, A., Leite, J.: Structural, electronic, and effective-mass properties of silicon and zinc-blende group-III nitride semiconductor compounds. Phys. Rev. B 63(16), 165210 (2001)

    Article  Google Scholar 

  28. Goumri-Said, S., Kanoun, M.B., Merad, A.E., Merad, G., Aourag, H.: Prediction of structural and thermodynamic properties of zinc-blende AlN: molecular dynamics simulation. Chem. Phys. 302(1–3), 135–141 (2004)

    Article  Google Scholar 

  29. Bentayeb, A., Khodja, F.D., Chibani, S., Marbouh, N., Bekki, B., Khalfallah, B., Elkeurti, M.: Structural, electronic, and optical properties of AlNxSb1−x alloys through TB-mBJ-PBEsol: DFT study. J Comput. Electron. 18, 1–11 (2019)

    Article  Google Scholar 

  30. Kumar, S., Joshi, S., Joshi, B., Auluck, S.: Thermodynamical and electronic properties of BxAl1−xN alloys: a first principle study. J. Phys. Chem. Solids 86, 101–107 (2015)

    Article  Google Scholar 

  31. Mbarki, M., Alaya, R., Rebey, A.: Ab initio investigation of structural and electronic properties of zinc blende AlN1−xBix alloys. Solid State Commun. 155, 12–15 (2013)

    Article  Google Scholar 

  32. De Carvalho, L.C., Schleife, A., Bechstedt, F.: Influence of exchange and correlation on structural and electronic properties of AlN, GaN, and InN polytypes. Phys. Rev. B 84(19), 195105 (2011)

    Article  Google Scholar 

  33. Stampfl, C., Van de Walle, C.: Density-functional calculations for III–V nitrides using the local-density approximation and the generalized gradient approximation. Phys. Rev. B 59(8), 5521 (1999)

    Article  Google Scholar 

  34. Moussa, R., Abdiche, A., Khenata, R., Wang, X., Varshney, D., Sun, X.W., Omran, S.B., Bouhemadou, A., Rai, D.: Structural, electronic, optical, thermodynamic and elastic properties of the zinc-blende AlxIn1−xN ternary alloys: a first principles calculations. J. Phys. Chem. Solids 119, 36–49 (2018)

    Article  Google Scholar 

  35. Shan, W., Ager III, J., Yu, K., Walukiewicz, W., Haller, E., Martin, M., McKinney, W., Yang, W.: Dependence of the fundamental band gap of AlxGa1−xN on alloy composition and pressure. J. Appl. Phys. 85(12), 8505–8507 (1999)

    Article  Google Scholar 

  36. Shan, W., Ager III, J., Walukiewicz, W., Haller, E., Little, B., Song, J., Schurman, M., Feng, Z., Stall, R., Goldenberg, B.: Near-band-edge photoluminescence emission in AlxGa1−xN under high pressure. Appl. Phys. Lett. 72(18), 2274–2276 (1998)

    Article  Google Scholar 

  37. Yoshida, S., Misawa, S., Gonda, S.: Properties of AlxGa1−xN films prepared by reactive molecular beam epitaxy. J. Appl. Phys. 53(10), 6844–6848 (1982)

    Article  Google Scholar 

  38. Amin, B.: Goumri-Said, R. Ahmad. J. Appl. Phys. 109, 023109 (2011)

    Article  Google Scholar 

  39. Fan, W., Li, M., Chong, T., Xia, J.: Electronic properties of zinc-blende GaN, AlN, and their alloys Ga1−xAlxN. J. Appl. Phys. 79(1), 188–194 (1996)

    Article  Google Scholar 

  40. Beiranvand, R., Valedbagi, S.: Electronic and optical properties of advance semiconductor materials: BN, AlN and GaN nanosheets from first principles. OPTIK 127(3), 1553–1560 (2016)

    Article  Google Scholar 

  41. Penn, D.R.: Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128(5), 2093 (1962)

    Article  MATH  Google Scholar 

  42. Hosseini, S.: Optical properties of cadmium telluride in zinc-blende and wurzite structure. Phys. B 403(10–11), 1907–1915 (2008)

    Article  Google Scholar 

  43. Bougherara, K., Litimein, F., Khenata, R., Uçgun, E., Ocak, H., Uğur, Ş., Uğur, G., Reshak, A.H., Soyalp, F., Omran, S.B.: Structural, elastic, electronic and optical properties of Cu3TMSe4 (TM = V, Nb and Ta) sulvanite compounds via first-principles calculations. Sc.i Adv. Mater 5(1), 97–106 (2013)

    Article  Google Scholar 

  44. Saha, S., Sinha, T., Mookerjee, A.: Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3. Phys. Rev. B 62(13), 8828 (2000)

    Article  Google Scholar 

  45. Kuzmenko, A.: Kramers–Kronig constrained variational analysis of optical spectra. Rev. Sci. Instrum. 76(8), 083108 (2005)

    Article  Google Scholar 

  46. Özdemir, U., Korcak, S., Gültekin, A., Öztürk, M.: Investigation of structural, electronic, elastic, optical and dynamical properties of Ga1−xAlxN alloys. Mater. Res. Express 6(9), 096318 (2019)

    Article  Google Scholar 

  47. Muth, J., Brown, J.D., Johnson, M., Yu, Z., Kolbas, R., Cook, J., Schetzina, J.: Absorption coefficient and refractive index of GaN, AlN and AlGaN alloys. Mater. Res. Soc. Internet J. Nitride Semicond. Res. 4(S1), 502–507 (1999)

    Article  Google Scholar 

  48. Maqbool, M., Ahmad, I., Richardson, H., Kordesch, M.: Direct ultraviolet excitation of an amorphous AlN: praseodymium phosphor by codoped Gd3+ cathodoluminescence. Appl. Phys. Lett. 91(19), 193511 (2007)

    Article  Google Scholar 

  49. Bhattacharyya, A., Iyer, S., Iliopoulos, E., Sampath, A., Cabalu, J., Moustakas, T., Friel, I.: High reflectivity and crack-free AlGaN/AlN ultraviolet distributed Bragg reflectors. J. Vac. Sci. Technol. B 20(3), 1229–1233 (2002)

    Article  Google Scholar 

  50. Someya, T., Arakawa, Y.: Highly reflective GaN/Al 0.34 Ga 0.66 N quarter-wave reflectors grown by metal organic chemical vapor deposition. Appl. Phys. Lett. 73(25), 3653–3655 (1998)

    Article  Google Scholar 

  51. Li, X., Sundaram, S., Disseix, P., Le Gac, G., Bouchoule, S., Patriarche, G., Réveret, F., Leymarie, J., El Gmili, Y., Moudakir, T.: AlGaN-based MQWs grown on a thick relaxed AlGaN buffer on AlN templates emitting at 285 nm. Opt. Mater. Express 5(2), 380–392 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kafi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kafi, A., Driss Khodja, F., Saadaoui, F. et al. An ab initio study of the structural and optoelectronic properties of AlxGa1−xN (x = 0, 0.125, 0.375, 0.625, 0.875, and 1) semiconductors. J Comput Electron 19, 26–37 (2020). https://doi.org/10.1007/s10825-019-01423-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01423-2

Keywords

Navigation