Skip to main content
Log in

A general analytical method for finding the quantum capacitance of graphene

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The quantum capacitance of graphene has been modeled in numerous articles using approximate analytical expressions and numerical methods. However, no article shows how to analytically find the quantum capacitance of graphene for the full temperature range and for any Fermi level. This, of course, would require a complete analytical evaluation of Fermi–Dirac-type integrals valid for any temperature. This article will illustrate a method for finding the quantum capacitance of monolayer graphene in the presence of electron–hole puddles for any Fermi level and for any temperature. The method employed is easily generalized to find the quantum capacitance of bilayer graphene as well as any other material when the density of states is a known function of energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Selvaggi, J.P.: Exact analytical solution to the electron density for monolayer and bilayer graphene. J. Comput. Electron. 17(2), 491–498 (2018)

    Article  Google Scholar 

  2. Kliros, G.S.: A phenomenological model for the quantum capacitance of monolayer and bilayer graphene devices. Romanian J. Inf. Sci. Technol. 10(3), 332–341 (2010)

    Google Scholar 

  3. Aliofkhazraei, M., Nasar, A., Milne, W.I., Ozkan, C.S., Mitura, S., Gervasoni, J.L.: Graphene Science Handbook: Applications and Industrialization. CRC Press, New York (2016)

    Book  Google Scholar 

  4. Muccini, M.: A bright future for organic field-effect transistors. Nat. Mater. 5, 605–613 (2006)

    Article  Google Scholar 

  5. Malachowski, M.J., Żmija, J.: Organic field-effect transistors. Opto-Electron. Rev. 18(2), 121–136 (2010)

    Article  Google Scholar 

  6. C.J, Drury, Mutsaers, C.M.J., Hart, C.M., Matters, M., de Leeuw, D.M.: Low-cost all-polymer integrated circuits. Appl. Phys. Lett. 73, 108–110 (1998)

    Article  Google Scholar 

  7. Borsenberger, P.M., Weiss, D.S.: Organic Photoreceptors for Xerography. Optical Engineering Series, vol. 49. Marcel Dekker, New York (1998)

    Google Scholar 

  8. Jia, C., Ma, W., Gu, C., Chen, H., Yu, H., Li, X., Zhang, F., Gu, L., Xia, A., Hou, X., Meng, S., Guo, X.: High-efficiency selective electron tunnelling in a heterostructure photovoltaic diode. Nano Lett. 16, 3600–3606 (2016)

    Article  Google Scholar 

  9. Zhang, Y., Dodson, K.H., Fischer, R., Wang, R., Li, D., Sappington, R.M., Xu, Y.Q.: Probing electrical signals in the retina via graphene-integrated microfluidic platforms. Nanoscale 8(45), 19043–19049 (2016)

    Article  Google Scholar 

  10. Buckley, A.: Organic Light-Emitting Diodes (OLEDs): Materials, Devices and Applications. Woodhead Publishing Limited, Oxford (2013)

    Book  Google Scholar 

  11. Han, T.H., Lee, Y., Choi, M.R., Woo, S.H., Bae, S.H., Hong, B.H., Ahn, J.H., Lee, T.W.: Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photon. 6, 105–110 (2012)

    Article  Google Scholar 

  12. Wu, T.L., Yeh, C.H., Hsiao, W.T., Huang, P.Y., Huang, M.J., Chiang, Y.H., Cheng, C.H., Liu, R.S., Chiu, P.W.: High-performance organic light-emitting diode with substitutionally boron-doped graphene anode. ACS Appl. Mater. Interfaces 9(17), 14998–15004 (2017)

    Article  Google Scholar 

  13. Li, S.S., Tu, K.H., Lin, C.C., Chen, C.W., Chhowalla, M.: Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4(6), 3169–3174 (2010)

    Article  Google Scholar 

  14. Bassler, H.: Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Phys. Status Solidi B 175(1), 15–56 (1993)

    Article  Google Scholar 

  15. Lin, X.F., Zhang, Z.Y., Yuan, Z.K., Li, J., Xiao, X.F., Hong, W., Chen, X.D., Yu, D.S.: Graphene-based materials for polymer solar cells. Chin. Chem. Lett. 27(8), 1259–1270 (2016)

    Article  Google Scholar 

  16. Cody, W.J., Thacher, H.C.: Rational Chebyshev approximations for Fermi–Dirac integrals of orders \(-\)1/2, 1/2 and 3/2. Math. Comput. 21(97), 30–40 (1967)

    MATH  Google Scholar 

  17. McDougall, J., Stoner, E.C.: The computation of Fermi–Dirac functions. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 237(773), 67–104 (1938)

    Article  MATH  Google Scholar 

  18. Wong, S.A., McAlister, S.P., Li, Z.M.: A comparison of some approximations for the Fermi–Dirac integral of order. Solid-State Electron. 37(1), 61–64 (1994)

    Article  Google Scholar 

  19. Rządkowski, G., Łepkowski, S.: A generalization of the Euler–Maclaurin summation formula: an application to numerical computation of the Fermi–Dirac integrals. J. Sci. Comput. 35, 63–74 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mohankumar, N., Kannan, T., Kanmani, S.: On the evaluation of Fermi–Dirac integral and its derivatives by IMT and DE quadrature methods. Comput. Phys. Commun. 168(2), 71–77 (2005)

    Article  MATH  Google Scholar 

  21. Kozhukhovskii, A.D., Simonzhenkov, S.D., Litvin, A.I.: Numerical Integration of Fermi–Dirac and Voigt functions. J. Math. Sci. 72(3), 3129–3132 (1994)

    Article  Google Scholar 

  22. Mohankumar, N., Natarajan, A.: On the very accurate numerical evaluation of the generalized Fermi–Dirac integrals. Comput. Phys. Commun. 207, 193–201 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fukushima, T.: Precise and fast computation of generalized Fermi–Dirac integral by parameter polynomial approximation. Appl. Math. Comput. 270, 802–807 (2015)

    MathSciNet  Google Scholar 

  24. Selvaggi, J.A., Selvaggi, J.P.: The analytical evaluation of the half-order Fermi–Dirac integrals. Open Math. J. 5, 1–7 (2012)

    Article  MathSciNet  Google Scholar 

  25. Selvaggi J.P., Selvaggi, J.A.: The application of real convolution for analytically evaluating Fermi–Dirac-type and Bose–Einstein-type integrals. J. Complex Anal. 2018, Article ID 5941485, 1–8 (2018)

  26. Selvaggi, J.P.: Analytical evaluation of the charge carrier density of organic materials with a Gaussian density of states revisited. J. Comput. Electron. 17(1), 61–67 (2018)

    Article  Google Scholar 

  27. Mehmetoğlu, T.: Analytical evaluation of charge carrier density of organic materials with Gauss density of states. J. Comput. Electron. 13(4), 960–964 (2014)

    Article  Google Scholar 

  28. Paasch, G., Scheinert, S.: Charge carrier density of organics with Gaussian density of states: analytical approximation for the Gauss–Fermi integral. J. Appl. Phys. 107(10), 104501-1–104501-4 (2010)

    Article  Google Scholar 

  29. Nawaz, S., Tahir, M.: Quantum capacitance in monolayers of silicene and related buckled materials. Physica E 76, 169–172 (2016)

    Article  Google Scholar 

  30. Bisquert, J.: Interpretation of electron diffusion coefficient in organic and inorganic semiconductors with broad distribution of states. Phys. Chem. Chem. Phys. 10(22), 3175–3194 (2008)

    Article  Google Scholar 

  31. Tahir, M., Schwingenschlögl, U.: Beating of magnetic oscillations in graphene device probed by quantum capacitance. Appl. Phys. Lett. 101(1), 013114-1–013114-3 (2012)

    Article  Google Scholar 

  32. Tahir, M., Sabeeh, K., Shaukat, A., Schwingenschlögl, U.: Theory of substrate, Zeeman, and electron-phonon interaction effects on the quantum capacitance in graphene. J. Appl. Phys. 114(22), 223711-1–223711-6 (2013)

    Article  Google Scholar 

  33. Santiago, F.F., Seró, I.M., Belmonte, G., Bisquert, J.: Cyclic voltammetry studies of nanoporous semiconductors, capacitive and reactive properties of nanocrystalline \(\text{ TiO }_{2}\), electrodes in aqueous electrolyte. J. Phys. Chem. B 107(3), 758–768 (2003)

    Article  Google Scholar 

  34. Kliros, G.S.: Quantum capacitance of bilayer graphene. CAS Proc. Int. Semicond. Conf. 1, 69–72 (2010)

    Google Scholar 

  35. Kliros, G.S.: Influence of density inhomogeneity on the quantum capacitance of graphene nanoribbon field effect transistors. Superlattices Microstruct. 52(6), 1093–1102 (2012)

    Article  Google Scholar 

  36. Li, Q., Hwang, E.H., Das Sarma, S.: Disorder-induced temperature-dependent transport in graphene: puddles, impurities, activation, and diffusion. Phys. Rev. B 84, 115442-1–115442-16 (2011)

    Google Scholar 

  37. Wang, L., Wang, W., Xu, G., Ji, Z., Lu, N., Li, L., Liu, M.: Analytical carrier density and quantum capacitance for graphene. Appl. Phys. Lett. 108(1), 013503-1–013503-5 (2016)

    Google Scholar 

  38. Cheremisin, M.V.: Quantum capacitance of the monolayer graphene. Physica E 69, 153–158 (2015)

    Article  Google Scholar 

  39. Fang, T., Konar, A., Xing, H., Jena, D.: Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett. 91(9), 092109-1–092109-3 (2007)

    Article  Google Scholar 

  40. Wolfram Research, Inc., MATHEMATICA, version 11.2, Wolfram Research, Inc., Champaign, Illinois (2017)

Download references

Acknowledgements

The author would like to express his thanks to Jerry A. Selvaggi for insightful discussions concerning the Fermi–Dirac integral. This ultimately leads the author to analytically evaluate a wide range of seemingly intractable integrals. The author would also like to express his gratitude to Jessica Diaz for helpful comments on various ways to numerically integrate Fermi–Dirac-type and Bose–Einstein-type integrals. Some of her ideas assisted the author in developing some useful numerical schemes to evaluate the quantum capacitance of MLG and BLG, and these were employed to check all the numerical results in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry P. Selvaggi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvaggi, J.P. A general analytical method for finding the quantum capacitance of graphene. J Comput Electron 17, 1268–1275 (2018). https://doi.org/10.1007/s10825-018-1202-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1202-0

Keywords

Navigation