Skip to main content
Log in

Graphene nanoribbon photodetectors based on an asymmetric potential barrier: a new concept and a new structure

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In the last decade, graphene photodetectors have been introduced and investigated in many works. In any photodetector, the separation of the photo-excited electrons and holes is one of the most basic mechanisms. However, a few distinct methods have already been introduced for the separation and all of them are based on the usage of a longitudinal electric field. In this paper, a new method is proposed. Our method is based on applying a vertical electric field which induces an asymmetric potential barrier in front of one or both of the photo-excited carriers. First, a simple one-dimensional toy model consisting of a one-dimensional atomic chain is used to focus on the concept. Many aspects, including the effects of the potential barrier location, its height, and its width, are investigated by this model. Then, in order to extend to real applications, a new structure is introduced in this paper; it is based on graphene nanoribbons and an asymmetric metal gate. Our results show that this structure results in appropriate carrier separation. The nonequilibrium Green function method with a tight-binding model is employed for the simulation of the proposed devices, and the results are shown in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Neto, A.C., Guinea, F., Peres, N., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009). https://doi.org/10.1103/RevModPhys.81.109

    Article  Google Scholar 

  2. Novoselov, K.S., Fal, V., Colombo, L., Gellert, P., Schwab, M., Kim, K.: A roadmap for graphene. Nature 490(7419), 192–200 (2012). https://doi.org/10.1038/nature11458

    Article  Google Scholar 

  3. Yoon, Y., Fiori, G., Hong, S., Iannaccone, G., Guo, J.: Performance comparison of graphene nanoribbon FETs with Schottky contacts and doped reservoirs. IEEE Trans. Electron Devices 55(9), 2314–2323 (2008). https://doi.org/10.1109/TED.2008.928021

    Article  Google Scholar 

  4. Sanaeepur, M., Goharrizi, A.Y., Sharifi, M.J.: Performance analysis of graphene nanoribbon field effect transistors in the presence of surface roughness. IEEE Trans. Electron Devices 61(4), 1193–1198 (2014). https://doi.org/10.1109/TED.2013.2290049

    Article  Google Scholar 

  5. Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.: Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010). https://doi.org/10.1038/nphoton.2010.186

    Article  Google Scholar 

  6. Xia, F., Mueller, T., Lin, Y.-M., Valdes-Garcia, A., Avouris, P.: Ultrafast graphene photodetector. Nat. Nanotechnol. 4(12), 839–843 (2009). https://doi.org/10.1038/nnano.2009.292

    Article  Google Scholar 

  7. Mueller, T., Xia, F., Avouris, P.: Graphene photodetectors for high-speed optical communications. Nat. Photonics 4(5), 297–301 (2010). https://doi.org/10.1038/nphoton.2010.40

    Article  Google Scholar 

  8. Shiue, R.-J., Gan, X., Gao, Y., Li, L., Yao, X., Szep, A., Walker Jr., D., Hone, J., Englund, D.: Enhanced photodetection in graphene-integrated photonic crystal cavity. Appl. Phys. Lett. 103(24), 241109 (2013). https://doi.org/10.1063/1.4839235

    Article  Google Scholar 

  9. Furchi, M., Urich, A., Pospischil, A., Lilley, G., Unterrainer, K., Detz, H., Klang, P., Andrews, A.M., Schrenk, W., Strasser, G.: Microcavity-integrated graphene photodetector. Nano Lett. 12(6), 2773–2777 (2012). https://doi.org/10.1021/nl204512x

    Article  Google Scholar 

  10. Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., de Arquer, F.P.G., Gatti, F., Koppens, F.H.: Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7(6), 363–368 (2012). https://doi.org/10.1038/nnano.2012.60

    Article  Google Scholar 

  11. Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. Wiley, New York (2006)

    Book  Google Scholar 

  12. Ryzhii, V., Ryabova, N., Ryzhii, M., Baryshnikov, N., Karasik, V., Mitin, V., Otsuji, T.: Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures. Opto-Electron. Rev. 20(1), 15–25 (2012). https://doi.org/10.2478/s11772-012-0009-y

    Article  Google Scholar 

  13. Gao, Q., Guo, J.: Quantum mechanical simulation of graphene photodetectors. J. Appl. Phys. 112(8), 084316 (2012). https://doi.org/10.1063/1.4759369

    Article  Google Scholar 

  14. Zarei, M., Sharifi, M.: Defect-based graphene nanoribbon photodetectors: a numerical study. J. Appl. Phys. 119(21), 213104 (2016). https://doi.org/10.1063/1.4953003

    Article  Google Scholar 

  15. Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  16. Henrickson, L.E.: Nonequilibrium photocurrent modeling in resonant tunneling photodetectors. J. Appl. Phys. 91(10), 6273–6281 (2002). https://doi.org/10.1063/1.1473677

    Article  Google Scholar 

  17. Ouyang, Y., Yoon, Y., Guo, J.: Scaling behaviors of graphene nanoribbon FETs: a three-dimensional quantum simulation study. IEEE Trans. Electron Devices 54(9), 2223–2231 (2007). https://doi.org/10.1109/TED.2007.902692

    Article  Google Scholar 

  18. Ostovari, F., Moravvej-Farshi, M.K.: Photodetectors with zigzag and armchair graphene nanoribbon channels and asymmetric source and drain contacts: detectors for visible and solar blind applications. J. Appl. Phys. (2016). https://doi.org/10.1063/1.4964436

    Google Scholar 

  19. Anantram, M., Lundstrom, M.S., Nikonov, D.E.: Modeling of nanoscale devices. Proc. IEEE 96(9), 1511–1550 (2008). https://doi.org/10.1109/JPROC.2008.927355

    Article  Google Scholar 

  20. Pereira, V.M., Neto, A.C., Peres, N.: Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80(4), 045401 (2009). https://doi.org/10.1103/PhysRevB.80.045401

    Article  Google Scholar 

  21. Sancho, M.L., Sancho, J.L., Sancho, J.L., Rubio, J.: Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F Met. Phys. 15(4), 851 (1985)

    Article  Google Scholar 

  22. Yariv, A.: An Introduction to Theory and Applications of Quantum Mechanics. Courier Corporation, North Chelmsford (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad J. Sharifi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, M.H., Sharifi, M.J. Graphene nanoribbon photodetectors based on an asymmetric potential barrier: a new concept and a new structure. J Comput Electron 17, 531–539 (2018). https://doi.org/10.1007/s10825-018-1132-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1132-x

Keywords

Navigation