Skip to main content

Advertisement

Log in

Self-energy of cold atoms in a long-range disordered optical potential

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We study the effect of correlation on the expansion of a Bose–Einstein condensate (BEC) released from a harmonic trap. We go beyond the first-order Born approximation (FBA) to use the self-consistent Born approximation (SCBA) to calculate the self-energy \(\Sigma (\varepsilon , k)\) of an atom in a speckle potential with constant amplitude of disorder. For very cold atoms (\(k= 0\)), low chemical potential \(\mu \ll \varepsilon _{\xi }\), and \(U/ \varepsilon ^{2}_{\xi } = 1\), the self-energy spectrum is wide when calculated in the SCBA compared with the FBA. The SCBA locates the band edge at somewhat higher energy, giving rise to many localized atoms. We focus mainly on the energy distribution at \(k = 0\) as expressed by the spectral function. Our numerical results show that the spectral function of the expanding atoms as calculated in the FBA at \(\varepsilon = 0\) has low weight and extends up to \(\varepsilon = 4 \varepsilon _{\xi }\). When using the SCBA, the behavior of the energy distribution for low chemical potential is different, showing a continuum, while a large weight corresponding to \(\varepsilon \) shifts the spectrum of negative energy values to \(\frac{\varepsilon }{\varepsilon _\xi } = -0.78\) and the energy distribution is near unity. We show that the form of the density of states locates the mobility near \(\varepsilon = - \varepsilon _\xi \). At \(\varepsilon = 0\), we obtain 35 % of delocalized atoms. We conclude that correlation disorder seems to help localize atoms with energy below zero. In particular, we show that the negative energy values observed in the energy spectrum imply that the probability of finding an atom with energy \(\varepsilon _\xi \) around \(\varepsilon \) is conserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lagendijk, A., van Tiggelen, B.A., Wiersma, D.S.: Fifty years of Anderson localization. Phys. Today 62, 24–29 (2009)

    Article  Google Scholar 

  2. Aubry, A., Cobus, L.A., Skipetrov, S.E., van Tiggelen, B., Derode, A., Page, J.H.: Recurrent scattering and memory effect at the Anderson localization transition. Phys. Rev. Lett. 112, 043903–043905 (2014)

    Article  Google Scholar 

  3. Aspect, A., Inguscio, M.: Anderson localization of ultracold atoms. Phys. Today 62, 30–35 (2009)

    Article  Google Scholar 

  4. Jendrzejewski, F., Müller, K., Richard, J., Date, A., Plisson, T., Bouyer, P., Aspect, A., Josse, V.: Coherent backscattering of ultracold atoms. Phys. Rev. Lett. 109, 195302–195305 (2012)

    Article  Google Scholar 

  5. Jendrzejewski, F., Bernard, A., Müller, K., Cheinet, P., Josse, V., Piraud, M., Pezzé, L., Sanchez-Palencia, L., Aspect, A., Bouyer, P.: Three-dimensional localization of ultracold atoms in an optical disordered potential. Nat. Phys. 8, 398–403 (2012)

    Article  Google Scholar 

  6. Skipetrov, S.E., Sokolov, I.M.: Magnetic-field-driven localization of light in a cold-atom gas. Phys. Rev. Lett. 114, 053902–053905 (2015)

    Article  Google Scholar 

  7. Skipetrov, S.E., Sokolov, I.M., Havey, M.D.: Control of light trapping in a large atomic system by a static magnetic field. Phys. Rev. A 94, 013825–013827 (2016)

    Article  Google Scholar 

  8. Akkermans, E., Montambaux, G.: Mesoscopic Physics of Electrons and photons. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  9. Altshuler, B.L., Akkermans, E., Montambaux, G., Pichard, J.-L., Zinn-Justin, J. (eds.): Mesoscopic Quantum Physics. In: Proceedings of the Les Houches Summer School, Session LXI, Elsevier, North-Holland, Amsterdam. Proc (1995)

  10. Bergmann, G.: Weak localization in thin films: a time-of-flight experiment with conduction electrons. Phys. Rep. 107, 1–58 (1984)

    Article  Google Scholar 

  11. Lagendijk, A., van Tiggelen, B.A.: Resonant multiple scattering of light. Phys. Rep. 270, 143–215 (1996)

    Article  Google Scholar 

  12. Shapiro, B.: Cold atoms in the presence of disorder. J. Phys. A Math. Theor. 45, 143001–143038 (2012)

  13. Allard, B., Plisson, T., Holzmann, M., Salomon, G., Aspect, A., Bouyer, P., Bourdel, T.: Effect of disorder close to the superfluid transition in a two-dimensional Bose gas. Phys. Rev. A 85, 033602–033605 (2012)

  14. Beeler, M.C., Reed, M.E.W., Hong, T., Rolston, S.L.: Disorder-driven loss of phase coherence in a quasi-2D cold atom system. New J. Phys. 14, 073024 (2012)

    Article  Google Scholar 

  15. Pezzé, L., Sanchez-Palencia, L.: Localized and extended states in a disordered trap. Phys. Rev. Lett. 106, 040601–040604 (2011)

    Article  Google Scholar 

  16. Vollhardt, D., Wölfle, P.: Self-consistent theory of Anderson localization. In: Hanke, W., Kopaev, Y.V. (eds.) Electronic Phase Transitions. North-Holland, Amsterdam (1992)

    Google Scholar 

  17. Ioffe, A.F., Regel, A.R.: Non-crystalline, amorphous, and liquid electronic semiconductors. Prog. Semicond. 4, 237–291 (1960)

    Google Scholar 

  18. Kuhn, R.C., Miniatura, C., Delande, D., Sigwarth, O., Müller, C.M.: Localization of matter waves in two-dimensional disordered optical potentials. Phys. Rev. Lett. 98, 250403–250404 (2005)

    Article  Google Scholar 

  19. Kuhn, R.C., Sigwarth, O., Miniatura, C., Delande, D., Müller, C.A.: Coherent matter wave transport in speckle potentials. New J. Phys. 9, 161 (2007)

    Article  Google Scholar 

  20. Shapiro, B.: Expansion of a Bose-Einstein condensate in the presence of disorder. Phys. Rev. Lett. 99, 060602–060604 (2007)

    Article  Google Scholar 

  21. Skipetrov, S.E., Minguzzi, A., van Tiggelen, B.A., Shapiro, B.: Anderson localization of a Bose-Einstein condensate in a 3D random potential. Phys. Rev. Lett. 100, 165301–165304 (2008)

    Article  Google Scholar 

  22. Yedjour, A., van Tiggelen, B.A.: Diffusion and localization of cold atoms in 3D optical speckle. Eur. Phys. J. D 59, 249–255 (2010)

    Article  Google Scholar 

  23. Müller, C.A., Delande, D., Shapiro, B.: Critical dynamics at the Anderson localization mobility edge. Phys. Rev. A 94, 033615–033618 (2016)

    Article  Google Scholar 

  24. Roati, G., D’Errico, C., Fallani, L., Fattori, M., Fort, C., Zaccanti, M., Modugno, G., Modugno, M., Inguscio, M.: Anderson localization of a non-interacting Bose-Einstein condensate. Nature 453, 895–898 (2008)

    Article  Google Scholar 

  25. Billy, J., Josse, V., Zuo, Z., Bernard, A., Hambrecht, B.: Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 453, 891–894 (2008)

    Article  Google Scholar 

  26. Sanchez-Palencia, L., Clément, D., Lugan, P., Bouyer, P., Shlyapnikov, G.V., Aspect, A.: Anderson localization of expanding Bose-Einstein condensates in random potentials. Phys. Rev. Lett. 98, 210401–210404 (2007)

    Article  Google Scholar 

  27. Lugan, P., Aspect, A., Sanchez-Palencia, L., Delande, D., Grémaud, B., Müller, C.A., Miniatura, C.: One-dimensional Anderson localization in certain correlated random potentials. Phys. Rev. A 80, 023605–023605 (2009)

    Article  Google Scholar 

  28. Cusack, N.E.: The Physics of Structurally Disordered Matter: An Introduction. Adam Hilger IOP Publishing, Philadelphia (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bahlouli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yedjour, A., Bahlouli, S., Doumi, B. et al. Self-energy of cold atoms in a long-range disordered optical potential. J Comput Electron 16, 18–23 (2017). https://doi.org/10.1007/s10825-017-0953-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-0953-3

Keywords

Navigation