Skip to main content
Log in

Effects of substrate orientation on opto-electronic properties in self-assembled InAs/GaAs quantum dots

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

An Erratum to this article was published on 16 December 2014

Abstract

Electronic structure and optical transition characteristics in (100), (110), and (111) oriented InAs/GaAs quantum dots (containing \({\sim }2\) million atoms) were studied using a combination of valence force-field molecular mechanics and 20-band \(sp^{3}d^{5}s^{*}\) atomistic tight-binding framework. These quantum dots are promising candidates for non-traditional applications such as spintronics, quantum cryptography and quantum computation, but suffer from the deleterious effects of various internal fields. Here, the dependence of strain and polarization fields on the substrate orientation is reported and discussed. It is found that, compared to the (100) and (110) oriented counterparts, quantum dots grown on the (111) oriented substrate exhibit a smaller splitting (non-degeneracy) in the excited \(P\) states and enhanced isotropy in the interband optical emission characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Juska, G., Dimastrodonato, V., Mereni, L.O., Gocalinska, A., Pelucchi, E.: Towards quantum-dot arrays of entangled photon emitters. Nat. Photonics 7, 527–531 (2013)

    Article  Google Scholar 

  2. Rastelli, A., Kiravittaya, S., Schmidt, O.G.: Growth and control of optically active quantum dots. In: Michler, Peter (ed.) Single Semiconductor Quantum Dots. Springer, Berlin (2009)

    Google Scholar 

  3. Bimberg, D., Stock, E., Lochmann, A., Schliwa, A., Tofflinger, J.A., Unrau, W., Munnix, M., Rodt, S., Haisler, V.A., Toropov, A.I., Bakarov, A., Kalagin, A.K.: Quantum dots for single- and entangled-photon emitters. IEEE Photonics J. 1(1), 58–68 (2009)

    Article  Google Scholar 

  4. Kuroda, T., Mano, T., Ha, N., Nakajima, H., Kumano, H., Urbaszek, B., Jo, M., Abbarachi, M., Sakuma, Y., Sakoda, K., Suemune, I., Marie, X., Amand, T.: Symmetric quantum dots as efficient sources of highly entangled photons. Phys. Rev. B 88, 041306(R) (2013)

    Article  Google Scholar 

  5. Klimeck, G., Ahmed, S., Kharche, N., Bae, H., Clark, S., Haley, B., Lee, S., Naumov, M., Ryu, H., Saied, F., Prada, M., Korkusinski, M., Boykin, T.B.: Atomistic simulation of realistically sized nanodevices using NEMO 3-D. IEEE Trans. Electron Devices 54(9), 2079–2099 (2007)

  6. Benson, O., Santori, C., Pelton, M., Yamamoto, Y.: Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513 (2000)

    Article  Google Scholar 

  7. Grundmann, M., Stier, O., Bimberg, D.: InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure. Phys. Rev. B 52, 11969 (1995)

    Article  Google Scholar 

  8. Wang, L.W., Kim, J., Zunger, A.: Electronic structures of (110)-faceted self-assembled pyramidal InAs/GaAs quantum dots. Phys. Rev. B 59, 5678 (1999)

    Article  Google Scholar 

  9. Marquardt, O., O’Reilly, E.P., Schulz, S.: Electronic properties of site-controlled (111)-oriented zinc-blende InGaAs/GaAs quantum dots calculated using a symmetry-adapted \(\text{ k }\cdot \text{ p }\) Hamiltonian. J. Phys. 26, 035303 (2014)

    Google Scholar 

  10. Ahmed, S., Kharche, N., Rahman, R., Usman, M., Lee, S., Ryu, H., Bae, H., Clark, S., Haley, B., Naumov, M., Saied, F., Korkusinski, M., Kennel, R., Mclennan, M., Boykin, T.B., Klimeck, G.: Multimillion atom simulations with NEMO 3-D. In: Meyers, Robert (ed.) Encyclopedia of Complexity and Systems Science, vol. 6, pp. 5745–5783. Springer, New York (2009)

    Chapter  Google Scholar 

  11. Boykin, T.B., Klimeck, G., Bowen, R.C., Oyafuso, F.: Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory. Phys. Rev. B 66, 125207 (2002)

    Article  Google Scholar 

  12. Klimeck, G., Oyafuso, F., Boykin, T.B., Bowen, R.C., von Allmen, P.: Development of a nanoelectronic 3-D (NEMO 3-D) simulator for multimillion atom simulations and its application to alloyed quantum dots. J. Comput. Model. Eng. Sci. 3, 601 (2002)

    MATH  Google Scholar 

  13. Graf, M., Vogl, P.: Electromagnetic fields and dielectric response in empirical tight-binding theory. Phys. Rev. B 51, 4940 (1995)

    Article  Google Scholar 

  14. Boykin, T.B., Bowen, R.C., Klimeck, G.: Electromagnetic coupling and gauge invariance in the empirical tight-binding method. Phys. Rev. B 63, 245314 (2001)

    Article  Google Scholar 

  15. Boykin, T.B., Vogl, P.: Dielectric response of molecules in empirical tight-binding theory. Phys. Rev. B 65, 035202 (2001)

    Article  Google Scholar 

  16. Bester, G., Zunger, A.: Cylindrically shaped zinc-blende semiconductor quantum dots do not have cylindrical symmetry: atomistic symmetry, atomic relaxation, and piezoelectric effects. Phys. Rev. B 71, 045318 (2005)

    Article  Google Scholar 

  17. Bester, G., Zunger, A., Wu, X., Vanderbilt, D.: Effects of linear and nonlinear piezoelectricity on the electronic properties of InAs/GaAs quantum dots. Phys. Rev. B 74, 081305 (2006)

    Article  Google Scholar 

  18. Ahmed, S., Islam, S., Mohammed, S.: Electronic structure of InN/GaN quantum dots: multimillion atom tight-binding simulations. IEEE Trans. Electron Devices 57(1), 164–173 (2010)

    Article  Google Scholar 

  19. Yalavarthi, K., Chimalgi, V., Ahmed, S.: How important is nonlinear piezoelectricity in wurtzite GaN/InN/GaN disk-in-nanowire LED structures? Opt. Quant. Electron. 46, 925–933 (2014)

    Article  Google Scholar 

  20. Sundaresan, S., Gaddipati, V., Ahmed, S.: Effects of spontaneous and piezoelectric polarization fields on the electronic and optical properties in GaN/AlN quantum dots: multimillion-atom \(\text{ sp }^{3}\text{ d }^{5}\text{ s }^{\ast }\) tight-binding simulations. Int. J. Numer. Model. doi:10.1002/jnm.2008

Download references

Acknowledgments

This work was supported by U.S. National Science Foundation Grant No. 1102192. Computational resources on https://nanoHUB.org were used for part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaikh Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chimalgi, V., Kharche, N. & Ahmed, S. Effects of substrate orientation on opto-electronic properties in self-assembled InAs/GaAs quantum dots. J Comput Electron 13, 1026–1032 (2014). https://doi.org/10.1007/s10825-014-0626-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0626-4

Keywords

Navigation