Skip to main content
Log in

An accurate computation method based on artificial neural networks with different learning algorithms for resonant frequency of annular ring microstrip antennas

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

An annular ring compact microstrip antenna (ARCMA) constructed by loading a circular slot in the center of the circular patch antenna is a popular microstrip antenna due to its favorable properties. In this study, a method based artificial neural networks (ANNs) has been firstly applied for the computing the resonant frequency of ARCMAs. Multilayered perceptron model based on feed forward back propagation ANN has been utilized, and the constructed model have been separately trained with 8 different learning algorithms to achieve the best results regarding the resonant frequency of ARCMAs at dominant mode. To this end, the resonant frequencies of 80 ARCMAs with varied dimensions and electrical parameters in accordance with UHF band covering GSM, LTE, WLAN and WiMAX applications were simulated with a robust numerical electromagnetic computational tool, \(\hbox {IE3D}^\mathrm{TM}\), which is based on method of moment. Then, ANN model was constructed with the simulation data, by using 70 ARCMAs for training and the remaining 10 for test. As the performances of the 8 learning algorithms are compared with each other, the best result is obtained with Levenberg–Marquardt algorithm. The proposed ANN model were confirmed by comparing with the suggestions reported elsewhere via measurement data published earlier in the literature, and they have further validated on an ARCMA fabricated in this study. The results achieved in this study show that ANN model learning with LM algorithm can be successfully used to compute the resonant frequency of ARCMAs without involving any sophisticated methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wong, K.: Compact and Broadband Microstrip Antennas. Wiley, New York (2002)

    Book  Google Scholar 

  2. Kumar, G., Ray, K.P.: Broadband Microstrip Antennas. Artech House, Norwood (2003)

    Google Scholar 

  3. Deshmukh, A.A., Kumar, G.: Formulation of resonant frequency for compact rectangular microstrip antennas. Microw. Opt. Technol. Lett. 49(2), 498–501 (2007)

    Article  Google Scholar 

  4. Deshmukh, A.A., Phatak, N.V., Nagarbovdi, S., Ahuja, R.: Analysis of broadband E-shaped microstrip antennas. Int. J. Comput. Appl. 80(7), 0975–8887 (2013)

    Google Scholar 

  5. Akdagli, A., Toktas, A., Kayabasi, A., Develi, I.: An application of artificial neural network to compute the resonant frequency of E-shaped compact microstrip antennas. J. Electr. Eng-Elektrotech. Cas. 64(5), 317–322 (2013)

    Google Scholar 

  6. Kayabasi, A., Bicer, M.B., Akdagli, A., Toktas, A.: Computing resonant frequency of H-shaped compact microstrip antennas operating at UHF band by using artificial neural networks. J. Fac. Eng. Archit. Gazi Univ. 26, 833–840 (2011)

    Google Scholar 

  7. Chen, Z.N.: Radiation pattern of a probe fed L-shaped plate antenna. Microw. Opt. Technol. Lett. 27, 410–413 (2000)

    Article  Google Scholar 

  8. Chew, W.: A broad-band annular-ring microstrip antenna. IEEE Trans. Antennas and Propag. 30(5), 918–922 (1982)

    Article  Google Scholar 

  9. Dahele, J.S., Lee, K.F., Wong, D.: Dual-frequency stacked annular-ring microstrip antenna. IEEE Trans. Antennas Propag. 35, 1281–1285 (1987)

    Article  Google Scholar 

  10. Bahl, I.J., Stuchly, S.S., Stuchly, M.A.: A new microstrip radiator for medical applications. IEEE Trans. Microw. Theory Tech. 28, 1464–1469 (1980)

    Article  Google Scholar 

  11. Wolff, I., Knoppik, N.: Microstrip ring resonator and dispersion measurement on microstrip lines. Electron. Lett. 7, 779–781 (1971)

    Article  Google Scholar 

  12. Pintzos, S.G., Pregla, R.: A simple method for computing the resonant frequencies of microstrip ring resonators. IEEE Trans. Microw. Theory Tech. 26, 809–813 (1978)

    Article  Google Scholar 

  13. Wu, Y.S., Rosenbaum, F.J.: Mode chart for microstrip ring resonators. IEEE Trans. Microw. Theory Tech. 21, 487–489 (1973)

    Article  Google Scholar 

  14. Ali, S.M., Weng, C., Kong, J.: Vector Hankel transform analysis of annular-ring microstrip antenna. IEEE Trans. Antennas Propag. 30, 637–644 (1982)

    Article  Google Scholar 

  15. Fan, Z., Lee, K.F.: Hankel transform domain analysis of dual-frequency stacked circular-disk and annular-ring microstrip antennas. IEEE Trans. Antennas Propag. 29, 867–870 (1991)

    Google Scholar 

  16. Liu, H., Hu, X.F.: An improved method to analyze the input impedance of microstrip annular-ring antennas. J. Electromagn. W. Appl. 10, 827–833 (1996)

    Article  Google Scholar 

  17. Liu, H., Hu, X.F.: Input impedance analysis of microstrip annular ring antenna with thick substrate. Prog. Electromagn. Res. 12, 177–204 (1996)

    Google Scholar 

  18. Gurel, C.S., Yazgan, E.: Resonant frequency analysis of annular ring microstrip patch on uniaxial medium via Hankel transform domain immittance approach. Prog. Electromagn. Res. 11, 37–52 (2010)

    Article  Google Scholar 

  19. Motevasselian, A.: Specteral domain analysis of resonant characteristics and radiation patterns of a circular disk and annular ring microstrip antenna on uniaxial substrate. Prog. Electromagn. Res. 21, 237–251 (2011)

  20. Richards, W.F., Jai-Dong, O., Long, S.: A theoretical and experimental investigation of annular, annular sector, and circular sector microstrip antennas. IEEE Trans. Antennas Propag. 32, 864–867 (1984)

  21. Bhattacharyya, A.K., Garg, R.: Input impedance of annular ring microstrip antenna using circuit theory approach. IEEE Trans. Antennas Propag. 33, 369–374 (1985)

    Article  Google Scholar 

  22. El-Khamy, S.E., El-Awadi, R.M., El-Sharrawy, E.B.A.: Simple analysis and design of annular ring microstrip antennas. IEE Proc. H Microw. Antennas Propag. 133, 198–202 (1986)

    Article  Google Scholar 

  23. Gomez-Tagleand, J., Christodoulou, C.G.: Extended cavity model analysis of stacked microstrip ring antennas. IEEE Trans. Antennas Propag. 45, 1626–1635 (1997)

    Article  Google Scholar 

  24. Sathi, V., Ghobadi, C.H., Nourinia, J.: Optimization of circular ring microstrip antenna using genetic algorithm. Int. J. Infrared Millim. W. 29, 897–905 (2008)

    Article  Google Scholar 

  25. Bahl, I.J., Stuchly, S.S.: Closed-form expressions for computer-aided design of microstrip ring antennas. Int. J. Infrared Millim. W. Comput.-Aided Eng. 2, 144–154 (1992)

    Google Scholar 

  26. Kumar, R., Dhubkarya, D.C.: Design and analysis of circular ring microstrip antenna. Glob. J. Res. Eng. 11, 1 (2011)

    Google Scholar 

  27. Dahele, J.S., Lee, K.F.: Characteristics of annular-ring microstrip antenna. Electron. Lett. 18, 1051–1052 (1982)

    Article  Google Scholar 

  28. Lee, K.F., Dahele, J.S., Ho, K.Y.: Annular-ring and circular-disc microstrip antennas with and without air gaps. In: 13th European Microwave Conference, pp. 389–394. (1983)

  29. Row, J.S.: Dual-frequency circularly polarized annular-ring microstrip antenna. Electron. Lett. 40, 153–154 (2004)

    Article  Google Scholar 

  30. Shinde, J., Shinde, P., Kumar, R. Uplane, M.D., Mishra, B.K.: Resonant frequencies of a circularly polarized nearly circular annular ring microstrip antenna with superstrate loading and airgaps. In: Kaleidoscope: Innovations for Future Networks and Services, pp. 1–7. (2010)

  31. Malathi, P., Kumar, R.: On the design of multilayer circular microstrip antenna using artificial neural network. Int. J. Recent Trends Eng. 2, 70–74 (2009)

    Google Scholar 

  32. Kumar, A., Shukla, C.K.: Artificial neural network employed to design annular ring microstrip antenna. Int. J. Comput. Sci. Eng. 4, 4 (2012)

    Google Scholar 

  33. Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan College Publishing Company, New York (1994)

    MATH  Google Scholar 

  34. Hagan, M.T., Menhaj, M.: Training feed forward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5(6), 989–993 (1994)

    Article  Google Scholar 

  35. Zandieh, M., Azadeh, A., Hadadi, B., Saberi, M.: Application of neural networks for airline number of passenger estimation in time series state. J. Appl. Sci. 9(6), 1001–1013 (2009)

    Article  Google Scholar 

  36. Caddemi, A., Donato, N., Xibilia, M.G.: Advanced simulation of semiconductor devices by artificial neural networks. J. Comput. Electron. 2, 301–307 (2003)

    Article  Google Scholar 

  37. Harrington, R.F.: Field Computation by Moment Methods, Piscataway. IEEE Press, New Jersey (1993)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akdagli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akdagli, A., Kayabasi, A. An accurate computation method based on artificial neural networks with different learning algorithms for resonant frequency of annular ring microstrip antennas. J Comput Electron 13, 1014–1019 (2014). https://doi.org/10.1007/s10825-014-0624-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0624-6

Keywords

Navigation