Skip to main content
Log in

First principles investigations of geometric, electronic and optical properties of 5-aminotetrazole derivatives

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) is an important computational technique to study and predict the properties of isolated molecules. It is now a leading method for electronic structure calculations in chemistry and solid state physics. In this paper, we have investigated the geometric, electronic and optical properties of six 5-aminotetrazole derivatives employing DFT. The ground state geometries were optimized at B3LYP/6-311G∗∗ and B3LYP/6-31G∗∗ level of theories. The density of states, HOMOs and LUMOs and absorption spectra of all the compounds under study have been computed and discussed. The HOMOs are delocalized on aminotetrazole moiety in all the compounds. A comprehensible intra charge transfer has been observed from aminotetrazole moiety to entire compounds. In the absorption spectra, the wavelength of maximum absorption for triplets in all the systems is red shifted relative to their corresponding singlet wavelengths of absorption maximum. The B3LYP/6-311G∗∗ level of theory is found to give better results than B3LYP/6-31G∗∗ level of theory, to reproduce previously reported experimental data. In most of the cases B3LYP/6-31G∗∗ level of theory overestimate more the bond lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Koch, W., Holthausen, M.C.: A Chemist’s Guide to Density Functional Theory. Wiley-VCH, Weinheim (2000)

    Google Scholar 

  2. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  MathSciNet  Google Scholar 

  3. Benson, F.R.: The chemistry of the tetrazoles. Chem. Rev. 41, 1–61 (1947)

    Article  Google Scholar 

  4. Akira, K., Takeshi, H.: Sakai Chem. Industry Co. Ltd. Japan. Kokai 7362, 634 CI 12A 82 (1973)

  5. Koldobskii, G.I., Ostrovskii, V.A., Popavskii, V.S.: Advances in the chemistry of tetrazoles. Chem. Heterocycl. Compd. 17, 965–988 (1981)

    Article  Google Scholar 

  6. Chen, Z.X., Xiao, J.M., Xiao, H.M., Chiu, Y.N.: Studies on heats of formation for tetrazole derivatives with density functional theory B3LYP method. J. Phys. Chem. A 103, 8062–8066 (1999)

    Article  Google Scholar 

  7. Sadlej-Sosnowska, N.: Application of natural bond orbital analysis to delocalization and aromaticity in C-substituted tetrazoles. J. Org. Chem. 66, 8737–8743 (2001)

    Article  Google Scholar 

  8. Alkorta, I., Elguero, J.: A theoretical study on the tautomerism of C-carboxylic and methoxycarbonyl substituted azoles. Struct. Chem. 16, 507–514 (2005)

    Article  Google Scholar 

  9. Irfan, A., Cui, R., Zhang, J., Hao, L.: Push–pull effect on the charge transfer, and tuning of emitting color for disubstituted derivatives of mer-Alq3. Chem. Phys. 364, 39–45 (2009)

    Article  Google Scholar 

  10. Kiselev, V.G., Gritsan, N.P.: Theoretical study of the 5-aminotetrazole thermal decomposition. J. Phys. Chem. A 113, 3677–3684 (2009)

    Article  Google Scholar 

  11. Zhu, W., Xiao, H.: First-principles study of electronic structure, absorption spectra, and thermodynamic properties of crystalline 1H-tetrazole and its substituted derivatives. Struct. Chem. 21, 847–854 (2010)

    Article  MathSciNet  Google Scholar 

  12. Pagacz-Kostrzewa, M., Reva, I.D., Bronisz, R., Giuliano, B.M., Fausto, R., Wierzejewska, M.: Conformational behavior and tautomer selective photochemistry in low temperature matrices: the case of 5-(1H-tetrazol-1-yl)-1,2,4-triazole. J. Phys. Chem. A 115, 5693–5707 (2011)

    Article  Google Scholar 

  13. Ghule, V.D., Radhakrishnan, S., Jadhav, P.M.: Computational studies on tetrazole derivatives as potential high energy materials. Struct. Chem. 22, 775–782 (2011)

    Article  Google Scholar 

  14. Ravi, P., Surya, T.: A DFT study on the structure–property relationship of amino-, nitro- and nitrosotetrazoles, and their N-oxides: new high energy density molecules. Struct. Chem. 23, 487–498 (2012)

    Article  Google Scholar 

  15. Burn, P.L., Samuel, I.D.W., Lo, S.-C.: Organic phosphorescent material and organic optoelectronic device. Patent US2010/0096983 A1, 2010

  16. Cojocaru, P., Magagnin, L., Cavallotti, P.L.: Effect of 5-phenyl-1H-tetrazole on copper dissolution for e-CMP. ECS Trans. 25, 65–69 (2010)

    Article  Google Scholar 

  17. Pan, J., Parham, A.H.: Organic ionic compounds, compositions and electronic devices. Patent US 7935961 B2, 2011

  18. Werrett, M.V., Chartrand, D., Gale, J.D., Hanan, G.S., MacLellan, J.G., Massi, M., Muzzioli, S., Raiteri, P., Skelton, B.W., Silberstein, M., Stagni, S.: Synthesis, structural and photophysical investigation of diimine triscarbonyl Re(I) tetrazolato complexes. Inorg. Chem. 50, 1229–1241 (2011)

    Article  Google Scholar 

  19. MaGee, K.D.M., Wright, P.J., Muzzioli, S., Siedlovskas, C., Raiteri, P., Baker, M.V., Brown, D.H., Stagni, S., Massi, M.: Enhanced deep-blue emission from Pt(II) complexes bound to 2-pyridyltetrazolate and an ortho-xylene-linked bis(NHC)cyclophane. Dalton Trans. 42, 4233–4236 (2013)

    Article  Google Scholar 

  20. D’Alessio, D., Muzzioli, S., Skelton, B.W., Stagni, S., Massi, M., Ogden, M.I.: Luminescent lanthanoid complexes of a tetrazole-functionalised calix[4]arene. Dalton Trans. 41, 4736–4739 (2012)

    Article  Google Scholar 

  21. Shahroosvand, H., Najafi, L., Mohajerani, E., Khabbazi, A., Nasrollahzadeh, M.: Green, near-infrared electroluminescence of novel yttrium tetrazole complexes. J. Mater. Chem. C 1, 1337–1344 (2013)

    Article  Google Scholar 

  22. Irfan, A., Al-Sehemi, A.G., Asiri, A.M., Nadeem, M., Alamry, K.A.: A study on the electronic and charge transfer properties in tin phthalocyanine (SnPc) derivatives by density functional theory. Comput. Theor. Chem. 977, 9–12 (2011)

    Article  Google Scholar 

  23. Irfan, A., Al-Sehemi, A.G., Muhammad, S., Zhang, J.: Packing effect on the transfer integrals and mobility in α,α′-bis(dithieno[3,2-b:2′,3′-d]thiophene) (BDT) and its heteroatom-substituted analogues. Aust. J. Chem. 64, 1587–1592 (2011)

    Article  Google Scholar 

  24. Irfan, A., Al-Sehemi, A.G., Asiri, A.M.: Donor-enhanced bridge effect on the electronic properties of triphenylamine based dyes: density functional theory investigations. J. Mol. Model. 18, 3609–3615 (2012)

    Article  Google Scholar 

  25. Al-Sehemi, A.G., Irfan, A., Asiri, A.M.: The DFT investigations of the electron injection in hydrazone-based sensitizers. Theor. Chem. Acc. 131, 1199 (2012)

    Article  Google Scholar 

  26. Jin, R., Irfan, A.: Theoretical study of coumarin derivatives as chemosensors for fluoride anion. Comput. Theor. Chem. 986, 93–98 (2012)

    Article  Google Scholar 

  27. Irfan, A., Hina, N., Al-Sehemi, A.G., Asiri, A.M.: Quantum chemical investigations aimed at modeling highly efficient zinc porphyrin dye sensitized solar cells. J. Mol. Model. 18, 4199–4207 (2012)

    Article  Google Scholar 

  28. Al-Sehemi, A.G., Irfan, A., El-Agrody, A.M.: Synthesis, characterization and DFT study of 4H-benzo[h]chromene derivatives. J. Mol. Struct. 1018, 171–175 (2012)

    Article  Google Scholar 

  29. Irfan, A., Al-Sehemi, A.G.: Quantum chemical study in the direction to design efficient donor-bridge-acceptor triphenylamine sensitizers with improved electron injection. J. Mol. Model. 18, 4893–4900 (2012)

    Article  Google Scholar 

  30. Irfan, A., Ijaz, F., Al-Sehemi, A.G., Asiri, A.M.: Quantum chemical approach toward rational designing of highly efficient oxadiazole based oligomers used in organic field effect transistors. J. Comput. Electron. 11, 374–384 (2012)

    Article  Google Scholar 

  31. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian. Gaussian, Inc., Wallingford, CT (2009)

  32. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  Google Scholar 

  33. Miehlich, B., Savin, A., Stoll, H., Preuss, H.: Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett. 157, 200–206 (1989)

    Article  Google Scholar 

  34. Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  Google Scholar 

  35. Xu, W., Peng, B., Chen, J., Liang, M., Cai, F.: New triphenylamine-based dyes for dye-sensitized solar cells. J. Phys. Chem. C 112, 874–880 (2008)

    Article  Google Scholar 

  36. McLean, D., Chandler, G.S.: Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11–18. J. Chem. Phys. 72, 5639–5648 (1980)

    Article  Google Scholar 

  37. Raghavachari, K., Binkley, J.S., Seeger, R., Pople, J.A.: Self-consistent molecular orbital methods. 20. Basis set for correlated wave-functions. J. Chem. Phys. 72, 650–654 (1980)

    Article  Google Scholar 

  38. Mahmood, A., Khan, I.U., Arshad, M.N., Ahmed, J.: N-[Amino(azido)methylidene]-4-methylbenzenesulfonamide. Acta Crystallogr., Sect. E 67, o2140 (2011)

    Article  Google Scholar 

  39. Khan, I.U., Mahmood, A., Arshad, M.N.: 1-azido-N′-(phenylsulfonyl)-methanimidamide. Acta Crystallogr., Sect. E 67, o2703 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. Dr. A.G. Al-Sehemi, King Khalid University to provide technical support. The support and facilities provided by King Khalid University to carry out the research work are greatly acknowledged. The authors are also thankful to Prof. Ricardo Luiz Longo, Federal University of Pernambuco for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayyaz Mahmood.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

10825_2013_452_MOESM1_ESM.doc

First principles investigations of geometric, electronic and optical properties of 5-aminotetrazole derivatives (DOC 118 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmood, A., Irfan, A. First principles investigations of geometric, electronic and optical properties of 5-aminotetrazole derivatives. J Comput Electron 12, 437–447 (2013). https://doi.org/10.1007/s10825-013-0452-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-013-0452-0

Keywords

Navigation