Skip to main content
Log in

Application of the R-matrix method in quantum transport simulations

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

An Erratum to this article was published on 12 May 2011

Abstract

The paper gives an overview of recently developed method for effective quantum transport simulations in nanoscale electronic devices. In the present formulation the device is treated as a set of independent close subsystems with appropriate low-dimensional basis representations. In continuous transport models, the local R-matrix basis makes it possible to avoid discretization of the device area and achieve a much higher numerical accuracy with a lower computational burden compared to common grid schemes. Furthermore, the local basis representation provides a suitable framework for studying ionized impurity scattering by adjusting the shape of the device elements and their internal coordinate representation. Non-equilibrium current carrying electronic states are constructed by a recursive propagation scheme such that the major portion of the computation time scales linearly with the device volume. As an illustration, we apply the method to study ionized impurity scattering in a short Si channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hisamoto, D.: In: Tech. Dig.—Int. Electron Devices Meet, p. 429 (2001)

    Google Scholar 

  2. Lindert, N., Chang, L., Choi, Y., Anderson, E.H., Lee, W., King, T., Bokor, J., Chenming, H.: IEEE Electron Device Lett. 22, 487 (2001)

    Article  Google Scholar 

  3. Wensorra, J., Indlekofer, K.M., Lepsa, M.I., Förster, A., Lüth, H.: Nano Lett. 5, 2470 (2005)

    Article  Google Scholar 

  4. Liu, H.I., Biegelsen, D.K., Ponce, F.A., Johnson, N.M., Pease, R.F.W.: Appl. Phys. Lett. 64, 1383 (1994)

    Article  Google Scholar 

  5. Nayak, D., Kamjoo, K., Woo, J.C.S., Park, J.S., Wang, K.L.: Appl. Phys. Lett. 56, 66 (1990)

    Article  Google Scholar 

  6. Doris, B., Kanarsky, M.I., Roy, T.Y.Z., Dokumaci, R.A., Natzle, O., Mezzapelle, W., Mocuta, J., Womack, A., Gribelyuk, S., Jones, M., Miller, E.C., Wong, R.J., Haenscv, H.: In: Tech. Dig.—Int. Electron Devices Meet., p. 267 (2002)

    Google Scholar 

  7. McEuen, P.L., Fuhrer, M.S., Park, H.K.: IEEE Trans. Nanotechnol. 1, 78 (2002)

    Article  Google Scholar 

  8. Xiang, J., Lu, W., Hu, Y., Wu, Y., Yan, H., Lieber, C.M.: Nature 441, 489 (2006)

    Article  Google Scholar 

  9. Yeo, K.H., Suk, S.D., Li, M., Yeoh, Y., Cho, K.H., Hong, K.H., Yun, S., Lee, M.S., Cho, N., Lee, K., Hwang, D., Park, B., Kim, D.W., Park, D., Ryu, B.: In: Tech. Dig.—Int. Electron Devices Meet., p. 539 (2006)

    Google Scholar 

  10. Luisier, M., Schenk, A., Fichtner, W.: J. Appl. Phys. 100, 043713 (2006)

    Article  Google Scholar 

  11. Shao, Z., Porod, W., Lent, C.S., Kirkner, D.: J. Appl. Phys. 78, 2177 (1995)

    Article  Google Scholar 

  12. Liu, Y.X., Ting, D.Z.Y., McGill, Y.C.: Phys. Rev. B 54, 2675 (1996)

    Article  Google Scholar 

  13. Ting, D.Z.Y., Liu, Y.X., McGill, Y.C.: Phys. Rev. B 45, 3583 (1992)

    Article  Google Scholar 

  14. Strahberger, C., Vogl, P.: Phys. Rev. B 62, 7289 (2000)

    Article  Google Scholar 

  15. Lent, C.S., Kirkner, D.J.: J. Appl. Phys. 67, 6353 (1990)

    Article  Google Scholar 

  16. Xu, H.: Phys. Rev. B 50, 8469 (1994)

    Article  Google Scholar 

  17. Xu, H.: Phys. Rev. B 50, 12254 (1994)

    Article  Google Scholar 

  18. Zhang, L., Zhai, F., Xu, H.Q.: Phys. Rev. B 74, 195332 (2006)

    Article  Google Scholar 

  19. Torres, J.A., Saenz, J.J.: J. Phys. Soc. Jpn. 73, 2182 (2004)

    Article  MATH  Google Scholar 

  20. Todorov, T.N.: Phys. Rev. B 54, 5801 (1996)

    Article  Google Scholar 

  21. Rotter, S., Tang, J., Wirtz, L., Trost, J., Burgdörfer, J.: Phys. Rev. B 62, 1950 (2001)

    Article  Google Scholar 

  22. Rivas, C., Lake, R.: Phys. Status Solidi B 239, 94 (2003)

    Article  Google Scholar 

  23. Boykin, T.B., Luisier, M., Klimeck, G.: Phys. Rev. B 77, 165318 (2008)

    Article  Google Scholar 

  24. Ren, Z., Venugopal, R., Goasguen, S., Datta, S., Lundstrom, M.S.: IEEE Trans. Electron Devices 50, 1914 (2003)

    Article  Google Scholar 

  25. Mamaluy, D., Sabathil, M., Vogl, P.: J. Appl. Phys. 93, 4628 (2003)

    Article  Google Scholar 

  26. Khan, H.R., Mamaluy, D., Vasileska, D.: IEEE Trans. Electron Devices 54, 784 (2007)

    Article  Google Scholar 

  27. Mamaluy, D., Vasileska, D., Sabathil, M., Zibold, T., Vogl, P.: Phys. Rev. B 71, 245321 (2005)

    Article  Google Scholar 

  28. Kosov, D.S.: J. Chem. Phys. 120, 7165 (2004)

    Article  Google Scholar 

  29. Vagra, K., Pantelides, S.T.: Phys. Rev. Lett. 98, 076804 (2007)

    Article  Google Scholar 

  30. Schneider, B.I., Walker, R.B.: J. Chem. Phys. 70, 2466 (1979)

    Article  Google Scholar 

  31. Burke, P.G., Berrington, K.A. (eds.): Atomic and Molecular Processes: An R-Matrix Approach. IOP, Bristol (1993)

    Google Scholar 

  32. Jayasekera, T., Morrison, M.A., Mullen, K.: Phys. Rev. B 74, 235308 (2006)

    Article  Google Scholar 

  33. Wulf, U., Kucera, J., Racec, P.N., Sigmund, E.: Phys. Rev. B 58, 16209 (1989)

    Article  Google Scholar 

  34. Svizhenko, A., Anantram, M.P.: Phys. Rev. B 72, 085430 (2005)

    Article  Google Scholar 

  35. Pourfath, M., Kosina, H., Selberherr, S.: J. Comput. Electron. 6, 321 (2007)

    Article  Google Scholar 

  36. Luisier, M., Klimeck, G.: Phys. Rev. B 80, 155430 (2009)

    Article  Google Scholar 

  37. Mil’nikov, G.V., Mori, N., Kamakura, Y., Ezaki, T.: J. Appl. Phys. 104, 044506 (2008)

    Article  Google Scholar 

  38. Mil’nikov, G.V., Mori, N., Kamakura, Y., Ezaki, T.: Phys. Rev. Lett. 102, 036801 (2009)

    Article  Google Scholar 

  39. Mil’nikov, G.V., Mori, N., Kamakura, Y.: Phys. Rev. B 79, 235337 (2009)

    Article  Google Scholar 

  40. Inglesfield, J.E.: J. Phys. C 14, 3795 (1981)

    Article  Google Scholar 

  41. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  42. Light, J.C., Bacic, Z.: J. Chem. Phys. 87, 4008 (1987)

    Article  Google Scholar 

  43. Tolstikhin, O.I., Watanabe, S., Matsuzawa, M.: J. Phys. B 29, L389 (1996)

    Article  Google Scholar 

  44. Light, J.C., Hamilton, I.P., Lill, J.V.: J. Chem. Phys. 82, 1400 (1985)

    Article  Google Scholar 

  45. Mizuno, T., Okamura, J., Toriumi, A.: IEEE Trans. Electron Devices 41, 2216 (1994)

    Article  Google Scholar 

  46. Dellow, M.W., Beton, P.H., Langerak, C.J.G.M., Foster, Y.J., Main, P.C., Eaves, L., Henini, M., Beaumont, S.P., Wilkinson, C.D.W.: Phys. Rev. Lett. 68, 1754 (1992)

    Article  Google Scholar 

  47. Sellier, H., Lansbergen, G.P., Caro, J., Rogge, S., Collaert, N., Ferain, I., Jurczak, M., Biesemans, S.: Phys. Rev. Lett. 97, 206805 (2006)

    Article  Google Scholar 

  48. Jena, D., Konar, A.: Phys. Rev. Lett. 98, 136805 (2007)

    Article  Google Scholar 

  49. Khan, H.R., Vasileska, D., Ahmed, S.S., Ringhofer, C., Heitzinger, C.: J. Comput. Electron. 3, 337 (2004)

    Article  Google Scholar 

  50. Chiang, M.H., Lin, J.N., Kim, K., Chuang, C.T.: IEEE Trans. Electron Devices 54, 2055 (2007)

    Article  Google Scholar 

  51. Mil’nikov, G.V., Mori, N., Kamakura, Y., Ezaki, T.: Jpn. J. Appl. Phys. 47, 7765 (2008)

    Article  Google Scholar 

  52. Kamakura, Y., Mil’nikov, G.V., Mori, N., Taniguchi, K.: Jpn. J. Appl. Phys. 49, 04DC19 (2010)

    Article  Google Scholar 

  53. Lake, R., Datta, S.: Phys. Rev. B 45, 6670 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady Mil’nikov.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10825-011-0363-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mil’nikov, G., Mori, N. & Kamakura, Y. Application of the R-matrix method in quantum transport simulations. J Comput Electron 10, 51–64 (2011). https://doi.org/10.1007/s10825-011-0345-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-011-0345-z

Keywords

Navigation