Skip to main content
Log in

Blinded prediction of protein–ligand binding affinity using Amber thermodynamic integration for the 2018 D3R grand challenge 4

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In the framework of the 2018 Drug Design Data Resource grand challenge 4, blinded predictions on relative binding free energy were performed for a set of 39 ligands of the Cathepsin S protein. We leveraged the GPU-accelerated thermodynamic integration of Amber 18 to advance our computational prediction. When our entry was compared to experimental results, a good correlation was observed (Kendall’s τ: 0.62, Spearman’s ρ: 0.80 and Pearson’s R: 0.82). We designed a parallelized transformation map that placed ligands into several groups based on common alchemical substructures; TI transformations were carried out for each ligand to the relevant substructure, and between substructures. Our calculations were all conducted using the linear potential scaling scheme in Amber TI because we believe the softcore potential/dual-topology approach as implemented in current Amber TI is highly fault-prone for some transformations. The issue is illustrated by using two examples in which typical preparation for the dual-topology approach of Amber TI fails. Overall, the high accuracy of our prediction is a result of recent advances in force fields (ff14SB and GAFF), as well as rapid calculation of ensemble averages enabled by the GPU implementation of Amber. The success shown here in a blinded prediction strongly suggests that alchemical free energy calculation in Amber is a promising tool for future commercial drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang L, Wu Y, Deng Y, Kim B, Pierce L, Krilov G, Lupyan D, Robinson S, Dahlgren MK, Greenwood J, Romero DL, Masse C, Knight JL, Steinbrecher T, Beuming T, Damm W, Harder E, Sherman W, Brewer M, Wester R, Murcko M, Frye L, Farid R, Lin T, Mobley DL, Jorgensen WL, Berne BJ, Friesner RA, Abel R (2015) Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc 137(7):2695–2703. https://doi.org/10.1021/ja512751q

    Article  CAS  PubMed  Google Scholar 

  2. Chodera JD, Mobley DL, Shirts MR, Dixon RW, Branson K, Pande VS (2011) Alchemical free energy methods for drug discovery: progress and challenges. Curr Opin Struct Biol 21(2):150–160. https://doi.org/10.1016/j.sbi.2011.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schneider G (2010) Virtual screening: an endless staircase? Nat Rev Drug Discov 9(4):273–276. https://doi.org/10.1038/nrd3139

    Article  CAS  PubMed  Google Scholar 

  4. Homeyer N, Stoll F, Hillisch A, Gohlke H (2014) Binding free energy calculations for lead optimization: assessment of their accuracy in an industrial drug design context. J Chem Theory Comput 10(8):3331–3344. https://doi.org/10.1021/ct5000296

    Article  CAS  PubMed  Google Scholar 

  5. Knight JL, Brooks CL 3rd (2009) Lambda-dynamics free energy simulation methods. J Comput Chem 30(11):1692–1700. https://doi.org/10.1002/jcc.21295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hansen N, van Gunsteren WF (2014) Practical Aspects of Free-Energy Calculations: A Review. J Chem Theory Comput 10(7):2632–2647. https://doi.org/10.1021/ct500161f

    Article  CAS  PubMed  Google Scholar 

  7. Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3(5):300–313. https://doi.org/10.1063/1.1749657

    Article  CAS  Google Scholar 

  8. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, Grubmuller H, MacKerell AD Jr (2017) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14(1):71–73. https://doi.org/10.1038/nmeth.4067

    Article  CAS  PubMed  Google Scholar 

  10. Robertson MJ, Tirado-Rives J, Jorgensen WL (2015) Improved Peptide and Protein Torsional Energetics with the OPLSAA Force Field. J Chem Theory Comput 11(7):3499–3509. https://doi.org/10.1021/acs.jctc.5b00356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tian C, Kasavajhala K, Belfon K, Raguette L, Huang H, Miguez A, Bickel J, Wang Y, Pincay J, Wu Q, Simmerling C (2019) ff19SB: Amino-acid specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. ChemRxiv. https://doi.org/10.26434/chemrxiv.8279681.v1

    Article  Google Scholar 

  12. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  13. Salomon-Ferrer R, Gotz AW, Poole D, Le Grand S, Walker RC (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J Chem Theory Comput 9(9):3878–3888. https://doi.org/10.1021/ct400314y

    Article  CAS  PubMed  Google Scholar 

  14. Gotz AW, Williamson MJ, Xu D, Poole D, Le Grand S, Walker RC (2012) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J Chem Theory Comput 8(5):1542–1555. https://doi.org/10.1021/ct200909j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Le Grand S, Götz AW, Walker RC (2013) SPFP: Speed without compromise—a mixed precision model for GPU accelerated molecular dynamics simulations. Comput Phys Commun 184(2):374–380. https://doi.org/10.1016/j.cpc.2012.09.022

    Article  CAS  Google Scholar 

  16. Lee TS, Hu Y, Sherborne B, Guo Z, York DM (2017) Toward fast and accurate binding affinity prediction with pmemdGTI: an efficient implementation of GPU-accelerated thermodynamic integration. J Chem Theory Comput 13(7):3077–3084. https://doi.org/10.1021/acs.jctc.7b00102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gathiaka S, Liu S, Chiu M, Yang H, Stuckey JA, Kang YN, Delproposto J, Kubish G, Dunbar JB Jr, Carlson HA, Burley SK, Walters WP, Amaro RE, Feher VA, Gilson MK (2016) D3R grand challenge 2015: evaluation of protein–ligand pose and affinity predictions. J Comput Aided Mol Des 30(9):651–668. https://doi.org/10.1007/s10822-016-9946-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gaieb Z, Liu S, Gathiaka S, Chiu M, Yang H, Shao C, Feher VA, Walters WP, Kuhn B, Rudolph MG, Burley SK, Gilson MK, Amaro RE (2018) D3R Grand Challenge 2: blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies. J Comput Aided Mol Des 32(1):1–20. https://doi.org/10.1007/s10822-017-0088-4

    Article  CAS  PubMed  Google Scholar 

  19. Gaieb Z, Parks CD, Chiu M, Yang H, Shao C, Walters WP, Lambert MH, Nevins N, Bembenek SD, Ameriks MK, Mirzadegan T, Burley SK, Amaro RE, Gilson MK (2019) D3R Grand Challenge 3: blind prediction of protein–ligand poses and affinity rankings. J Comput Aided Mol Des 33(1):1–18. https://doi.org/10.1007/s10822-018-0180-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thurmond RL, Sun S, Sehon CA, Baker SM, Cai H, Gu Y, Jiang W, Riley JP, Williams KN, Edwards JP, Karlsson L (2004) Identification of a potent and selective noncovalent cathepsin S inhibitor. J Pharmacol Exp Ther 308(1):268–276. https://doi.org/10.1124/jpet.103.056879

    Article  CAS  PubMed  Google Scholar 

  21. Ameriks MK, Bembenek SD, Burdett MT, Choong IC, Edwards JP, Gebauer D, Gu Y, Karlsson L, Purkey HE, Staker BL, Sun S, Thurmond RL, Zhu J (2010) Diazinones as P2 replacements for pyrazole-based cathepsin S inhibitors. Bioorg Med Chem Lett 20(14):4060–4064. https://doi.org/10.1016/j.bmcl.2010.05.086

    Article  CAS  PubMed  Google Scholar 

  22. Wiener DK, Lee-Dutra A, Bembenek S, Nguyen S, Thurmond RL, Sun S, Karlsson L, Grice CA, Jones TK, Edwards JP (2010) Thioether acetamides as P3 binding elements for tetrahydropyrido-pyrazole cathepsin S inhibitors. Bioorg Med Chem Lett 20(7):2379–2382. https://doi.org/10.1016/j.bmcl.2010.01.103

    Article  CAS  PubMed  Google Scholar 

  23. Ameriks MK, Axe FU, Bembenek SD, Edwards JP, Gu Y, Karlsson L, Randal M, Sun S, Thurmond RL, Zhu J (2009) Pyrazole-based cathepsin S inhibitors with arylalkynes as P1 binding elements. Bioorg Med Chem Lett 19(21):6131–6134. https://doi.org/10.1016/j.bmcl.2009.09.014

    Article  CAS  PubMed  Google Scholar 

  24. Machauer R, Laumen K, Veenstra S, Rondeau JM, Tintelnot-Blomley M, Betschart C, Jaton AL, Desrayaud S, Staufenbiel M, Rabe S, Paganetti P, Neumann U (2009) Macrocyclic peptidomimetic beta-secretase (BACE-1) inhibitors with activity in vivo. Bioorg Med Chem Lett 19(5):1366–1370. https://doi.org/10.1016/j.bmcl.2009.01.055

    Article  CAS  PubMed  Google Scholar 

  25. Vassar R, Kovacs DM, Yan R, Wong PC (2009) The beta-secretase enzyme BACE in health and Alzheimer's disease: regulation, cell biology, function, and therapeutic potential. J Neurosci 29(41):12787–12794. https://doi.org/10.1523/JNEUROSCI.3657-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Prati F, Bottegoni G, Bolognesi ML, Cavalli A (2018) BACE-1 Inhibitors: From Recent single-target molecules to multitarget compounds for Alzheimer's disease. J Med Chem 61(3):619–637. https://doi.org/10.1021/acs.jmedchem.7b00393

    Article  CAS  PubMed  Google Scholar 

  27. Hanessian S, Yun H, Hou Y, Yang G, Bayrakdarian M, Therrien E, Moitessier N, Roggo S, Veenstra S, Tintelnot-Blomley M, Rondeau JM, Ostermeier C, Strauss A, Ramage P, Paganetti P, Neumann U, Betschart C (2005) Structure-based design, synthesis, and memapsin 2 (BACE) inhibitory activity of carbocyclic and heterocyclic peptidomimetics. J Med Chem 48(16):5175–5190. https://doi.org/10.1021/jm050142+

    Article  CAS  PubMed  Google Scholar 

  28. Wang L, Deng Y, Wu Y, Kim B, LeBard DN, Wandschneider D, Beachy M, Friesner RA, Abel R (2017) Accurate modeling of scaffold hopping transformations in drug discovery. J Chem Theory Comput 13(1):42–54. https://doi.org/10.1021/acs.jctc.6b00991

    Article  CAS  PubMed  Google Scholar 

  29. Yu HS, Deng Y, Wu Y, Sindhikara D, Rask AR, Kimura T, Abel R, Wang L (2017) Accurate and reliable prediction of the binding affinities of macrocycles to their protein targets. J Chem Theory Comput 13(12):6290–6300. https://doi.org/10.1021/acs.jctc.7b00885

    Article  CAS  PubMed  Google Scholar 

  30. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maestro (2019) Schrödinger, LLC, New York, NY

  32. DA Case IYB-S, Brozell SR, Cerutti DS, Cheatham TE, Cruzeiro VWD III, Darden TA, Duke RE, Gilson MK, Gohlke H, Goetz AW, Greene D, Harris R, Homeyer N, Izadi S, Kovalenko ATK, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein DJ, Merz KM, Monard G, Nguyen C, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe DR, Roitberg A, Schott-Verdugo S, Shen J, Simmerling CL, Smith J, Salomon-Ferrer R, Swails J, Walker RC, Wei H, Wolf RM, Wu X, Xiao L, York DM, Kollman PA (2018) AMBER 2018. University of California, San Francisco

  33. Boulanger E, Huang L, Rupakheti C, MacKerell AD Jr, Roux B (2018) Optimized Lennard–Jones parameters for Druglike small molecules. J Chem Theory Comput 14(6):3121–3131. https://doi.org/10.1021/acs.jctc.8b00172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66(Pt 1):12–21. https://doi.org/10.1107/S0907444909042073

    Article  CAS  PubMed  Google Scholar 

  35. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  36. Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  37. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical-integration of cartesian equations of motion of a system with constraints—molecular-dynamics of N-alkanes. J Comput Phys 23(3):327–341. https://doi.org/10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  38. Darden T, York D, Pedersen L (1993) Particle mesh ewald—an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  39. Wiener JJ, Wickboldt AT Jr, Wiener DK, Lee-Dutra A, Edwards JP, Karlsson L, Nguyen S, Sun S, Jones TK, Grice CA (2010) Discovery and SAR of novel pyrazole-based thioethers as cathepsin S inhibitors. Part 2: modification of P3, P4, and P5 regions. Bioorg Med Chem Lett 20(7):2375–2378. https://doi.org/10.1016/j.bmcl.2010.01.104

    Article  CAS  PubMed  Google Scholar 

  40. Steinbrecher T, Joung I, Case DA (2011) Soft-core potentials in thermodynamic integration: comparing one- and two-step transformations. J Comput Chem 32(15):3253–3263. https://doi.org/10.1002/jcc.21909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant GM107104 to CS and USPH NIH Grant GM078114 to D. Raleigh. We gratefully acknowledge support from Henry and Marsha Laufer and the Laufer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Simmerling.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10822_2019_223_MOESM1_ESM.zip

(1) ligand IDs in each group as shown in Fig. 1; (2) initial state, end state and number of steps of each transition in Fig. 1; (3) calculated and experimental ∆∆G values and the standard deviation of the calculated ∆∆G values from the three independent runs; (4) raw data and figure for Fig. 5.

10822_2019_223_MOESM2_ESM.pdf

Demonstrates two examples at where the softcore TI/dual-topology approach in Amber is problematic. Folder 2d-sketch contains figures showing the 2d structures of ligands in Cathepsin S free energy data set. Folder input contains pmemd input files for conducting minimization, equilibration and production run with λ = 0.00922. Input files are the same for other λ windows except for the clambda flag. Folder mol contains mol2 files for all ligands and substructures. Folder prm7rst7 contains all Amber parm7 and rst7 files for the TI calculations using pmemdGTI. Folder lib and folder frcmod contain library files and force field modification files used by Amber tleap. Folder pdb contains the pdb files loaded into Amber tleap for the protein-ligand complexes and the monomeric ligands. Folder smile4sub contains the smile strings defining the substructures. Folder prmLA contains Parmed scripts used for generating parm7 files for Amber TI. Folder TIexample contains an example TI calculation for the transformation of ligand 004 to substructure A.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Tian, C. & Simmerling, C. Blinded prediction of protein–ligand binding affinity using Amber thermodynamic integration for the 2018 D3R grand challenge 4. J Comput Aided Mol Des 33, 1021–1029 (2019). https://doi.org/10.1007/s10822-019-00223-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00223-x

Keywords

Navigation