Skip to main content
Log in

Virtual screening of integrase inhibitors by large scale binding free energy calculations: the SAMPL4 challenge

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

As part of the SAMPL4 blind challenge, filtered AutoDock Vina ligand docking predictions and large scale binding energy distribution analysis method binding free energy calculations have been applied to the virtual screening of a focused library of candidate binders to the LEDGF site of the HIV integrase protein. The computational protocol leveraged docking and high level atomistic models to improve enrichment. The enrichment factor of our blind predictions ranked best among all of the computational submissions, and second best overall. This work represents to our knowledge the first example of the application of an all-atom physics-based binding free energy model to large scale virtual screening. A total of 285 parallel Hamiltonian replica exchange molecular dynamics absolute protein-ligand binding free energy simulations were conducted starting from docked poses. The setup of the simulations was fully automated, calculations were distributed on multiple computing resources and were completed in a 6-weeks period. The accuracy of the docked poses and the inclusion of intramolecular strain and entropic losses in the binding free energy estimates were the major factors behind the success of the method. Lack of sufficient time and computing resources to investigate additional protonation states of the ligands was a major cause of mispredictions. The experiment demonstrated the applicability of binding free energy modeling to improve hit rates in challenging virtual screening of focused ligand libraries during lead optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Goodsell DS, Morris GM, Olson AJ (1996) J Mol Recognit 9:1–5

    Article  CAS  Google Scholar 

  2. Shoichet BK, McGovern SL, Wei B, Irwin JJ (2002) Curr Opin Chem Biol 6:439–446

    Article  CAS  Google Scholar 

  3. Zhou Z, Felts AK, Friesner RA, Levy RM (2007) J Chem Inf Model 47:1599–1608

    Article  CAS  Google Scholar 

  4. Trott O, Olson AJ (2010) J Comput Chem 31:455–461

    CAS  Google Scholar 

  5. Cosconati S, Forli S, Perryman AL, Harris R, Goodsell DS, Olson AJ (2010) Expert Opin Drug Discov 5:597–607

    Article  CAS  Google Scholar 

  6. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30:2785–2791

    Article  CAS  Google Scholar 

  7. Repasky MP, Murphy RB, Banks JL, Greenwood JR, Tubert-Brohman I, Bhat S, Friesner RA (2012) J Comput Aided Mol Des 26:787–799

    Article  CAS  Google Scholar 

  8. Gilson MK, Given JA, Bush BL, McCammon JA (1997) Biophys J 72:1047–1069

    Article  CAS  Google Scholar 

  9. Boresch S, Tettinger F, Leitgeb M, Karplus M (2003) J Phys Chem B 107:9535–9551

    Article  CAS  Google Scholar 

  10. Young T, Abel R, Kim B, Berne BJ, Friesner RA (2007) Proc Natl Acad Sci U S A 104:808–813

    Article  CAS  Google Scholar 

  11. Jorgensen WL (2004) Science 303:1813–1818

    Article  CAS  Google Scholar 

  12. Zhou H-X, Gilson MK (2009) Chem Rev 109:4092–4107

    Article  CAS  Google Scholar 

  13. Mobley DL, Dill KA (2009) Structure 17:489–498

    Article  CAS  Google Scholar 

  14. Gallicchio E, Lapelosa M, Levy RM (2010) J Chem Theory Comput 6:2961–2977

    Article  CAS  Google Scholar 

  15. Gallicchio E, Levy RM (2011) Adv Prot Chem Struct Biol 85:27–80

    Article  CAS  Google Scholar 

  16. Gallicchio E, Levy RM (2011) Curr Opin Struct Biol 21:161–166

    Article  CAS  Google Scholar 

  17. Wang L, Berne BJ, Friesner RA (2012) Proc Natl Acad Sci U S A 109:1937–1942

    Article  CAS  Google Scholar 

  18. Mobley DL, Klimovich PV (2012) J Chem Phys 137:230901

    Article  Google Scholar 

  19. Shirts MR, Mobley DL, Brown SP (2010) Free energy calculations in structure-based drug design. Cambridge University Press, Cambridge, MA

    Google Scholar 

  20. Chodera JD, Mobley DL, Shirts MR, Dixon RW, Branson K, Pande VS (2011) Curr Opin Struct Biol 21:150–160

    Article  CAS  Google Scholar 

  21. Lapelosa M, Gallicchio E, Levy RM (2012) J Chem Theory Comput 8:47–60

    Article  CAS  Google Scholar 

  22. Mobley DL (2012) J Comput Aided Mol Des 26:93–95

    Article  CAS  Google Scholar 

  23. Peat TS, Dolezal O, Newman J, Mobley D, Deadman JJ (2014) Interrogating HIV integrase for compounds that bind: a sample challenge. J Comput Aided Mol Des. doi:10.1007/s10822-014-9721-7

  24. Mobley DL, Liu S, Lim NM, Wymer KL, Perryman AL, Forli S, Deng N, Su J, Branson K, Olson AJ (2014) Blind prediction of HIV integrase binding from the SAMPL4 challenge. J Comput Aided Mol Des. doi:10.1007/s10822-014-9723-5

  25. Su Y, Gallicchio E, Das K, Arnold E, Levy RM (2007) J Chem Theory Comput 3:256–277

    Article  CAS  Google Scholar 

  26. Lapelosa M, Gallicchio E, Arnold GF, Arnold E, Levy RM (2009) J Mol Biol 385:675–691

    Article  CAS  Google Scholar 

  27. Frenkel YV, Gallicchio E, Das K, Levy RM, Arnold E (2009) J Med Chem 52:5896–5905

    Article  CAS  Google Scholar 

  28. Felts AK, Labarge K, Bauman JD, Patel DV, Himmel DM, Arnold E, Parniak MA, Levy RM (2011) J Chem Inf Model 51:1986–1998

    Article  CAS  Google Scholar 

  29. Gallicchio E (2012) Mol Biosci 2:7–22

    CAS  Google Scholar 

  30. Deng N, Zheng W, Gallicchio E, Levy RM (2011) J. Am. Chem. Soc 133:9387–9394

    Google Scholar 

  31. Engelman A, Kessl JJ, Kvaratskhelia M (2013) Curr Opin Chem Biol 17:339–345

    Google Scholar 

  32. Jurado KA, Wang H, Slaughter A, Feng L, Kessl JJ, Koh Y, Wang W, Ballandras-Colas A, Patel PA, Fuchs JR et al (2013) Proc Natl Acad Sci 110:8690–8695

    Article  CAS  Google Scholar 

  33. Mobley DL, Liu S, Lim NM, Wymer KL, Perryman AL, Forli S, Deng N, Su J, Branson K, Olson AS (2013) Blind prediction of HIV integrase binding from the SAMPL4 challenge. J Comput Aided Mol Des. doi:10.1007/s10822-014-9723-5

  34. Gallicchio E, Levy RM (2012) J Comput Aided Mol Des 25:505–516

    Article  Google Scholar 

  35. Tan Z, Gallicchio E, Lapelosa M, Levy RM (2012) J Chem Phys 136:144102

    Article  Google Scholar 

  36. Wickstrom L, He P, Gallicchio E, Levy RM (2013) J Chem Theory Comput 9:3136–3150

    Article  CAS  Google Scholar 

  37. Perryman AL, Santiago DN, Forli S, Santos-Martins D, Olson AJ (2014) Virtual screening with AutoDock Vina and the common pharmacophore engine of a low diversity library of fragments and hits against the three allosteric sites of HIV integrase: participation in the SAMPL4 protein-ligand binding challenge. J Comput Aided Mol Des. doi:10.1007/s10822-014-9709-3

  38. Chia-en C, Chen W, Gilson MK (2007) Proc Natl Acad Sci USA 104:1534–1539

    Article  Google Scholar 

  39. Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossváry I, Moraes MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE (2006) In: Proceedings of the ACM/IEEE conference on supercomputing (SC06). IEEE, Tampa, FL

  40. Perryman AL, Forli S, Morris GM, Burt C, Cheng Y, Palmer MJ, Whitby K, McCammon JA, Phillips C, Olson AJ (2010) J Mol Biol 397:600–615

    Article  CAS  Google Scholar 

  41. Greenwood JR, Calkins D, Sullivan AP, Shelley JC (2010) J Comput Aided Mol Des 24:591–604

    Article  CAS  Google Scholar 

  42. Gallicchio E, Paris K, Levy RM (2009) J Chem Theory Comput 5:2544–2564

    Article  CAS  Google Scholar 

  43. Shirts MR, Chodera JD (2008) J Chem Phys 129:124105

    Article  Google Scholar 

  44. Okumura H, Gallicchio E, Levy RM (2010) J Comput Chem 31:1357–1367

    CAS  Google Scholar 

  45. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  46. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  47. Banks JL, Beard JS, Cao Y, Cho AE, Damm W, Farid R, Felts AK, Halgren TA, Mainz DT, Maple JR, Murphy R, Philipp DM, Repasky MP, Zhang LY, Berne BJ, Friesner RA, Gallicchio E, Levy RM (2005) J Comput Chem 26:1752–1780

    Article  CAS  Google Scholar 

  48. Peat TS, Rhodes DI, Vandegraaff N, Le G, Smith JA, Clark LJ, Jones ED, Coates JAV, Thienthong N, Janet N et al (2012) PloS one 7:e40147

    Article  CAS  Google Scholar 

  49. Voet ARD, Kumar A, Berenger F, Zhang KYJ (2014) Combining in silico and in cerebro approaches for virtual screening and pose prediction in SAMPL4. J Comput Aided Mol Des. doi:10.1007/s10822-013-9702-2

  50. Boresch S, Tettinger F, Leitgeb M, Karplus M 107:9535–9551

  51. Deng N, Zhang P, Cieplak P, Lai L (2011) J Phys Chem B 115:11902–11910

    Article  CAS  Google Scholar 

  52. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Proteins Struct Funct Bioinforma 78:1950–1958

    CAS  Google Scholar 

  53. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, Spoel D et al (2013) Bioinformatics 29:845–854

    Article  CAS  Google Scholar 

  54. Bas DC, Rogers DM, Jensen JH (2008) Proteins Struct Funct Bioinforma 73:765–783

    Article  CAS  Google Scholar 

  55. Muddana HS, Daniel VC, Bielawski CW, Urbach AR, Isaacs L, Geballe MT, Gilson MK (2012) J Comput Aided Mol Des 6:475–487

    Google Scholar 

  56. Gallicchio E, Levy RM (2004) J Comput Chem 25:479–499

    Article  CAS  Google Scholar 

  57. Deng Y, Roux B (2009) J Phys Chem B 113:2234–2246

    Article  CAS  Google Scholar 

  58. Gallicchio E, Andrec M, Felts AK, Levy RM (2005) J Phys Chem B 109:6722–6731

    Article  CAS  Google Scholar 

  59. Brown SP, Muchmore SW (2006) J Chem Inf Model 46:999–1005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by Research Grants from the National Institute of Health (GM30580 and P50 GM103368). The calculations reported in this work have been performed at the BioMaPS High Performance Computing Center at Rutgers University funded in part by the NIH shared instrumentation Grants Nos. 1 S10 RR022375 and 1 S10 RR027444, on XSEDE resources under National Science Foundation allocation Grant No. TG-MCB100145, and on the Garibaldi cluster at the Scripps Research Institute. We thank David Mobley and the SAMPL4 organizers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emilio Gallicchio or Ronald M. Levy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (1159 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallicchio, E., Deng, N., He, P. et al. Virtual screening of integrase inhibitors by large scale binding free energy calculations: the SAMPL4 challenge. J Comput Aided Mol Des 28, 475–490 (2014). https://doi.org/10.1007/s10822-014-9711-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9711-9

Keywords

Navigation