Skip to main content
Log in

Simultaneous prediction of binding free energy and specificity for PDZ domain–peptide interactions

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Interactions between protein domains and linear peptides underlie many biological processes. Among these interactions, the recognition of C-terminal peptides by PDZ domains is one of the most ubiquitous. In this work, we present a mathematical model for PDZ domain–peptide interactions capable of predicting both affinity and specificity of binding based on X-ray crystal structures and comparative modeling with Rosetta. We developed our mathematical model using a large phage display dataset describing binding specificity for a wild type PDZ domain and 91 single mutants, as well as binding affinity data for a wild type PDZ domain binding to 28 different peptides. Structural refinement was carried out through several Rosetta protocols, the most accurate of which included flexible peptide docking and several iterations of side chain repacking and backbone minimization. Our findings emphasize the importance of backbone flexibility and the energetic contributions of side chain-side chain hydrogen bonds in accurately predicting interactions. We also determined that predicting PDZ domain–peptide interactions became increasingly challenging as the length of the peptide increased in the N-terminal direction. In the training dataset, predicted binding energies correlated with those derived through calorimetry and specificity switches introduced through single mutations at interface positions were recapitulated. In independent tests, our best performing protocol was capable of predicting dissociation constants well within one order of magnitude of the experimental values and specificity profiles at the level of accuracy of previous studies. To our knowledge, this approach represents the first integrated protocol for predicting both affinity and specificity for PDZ domain–peptide interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pawson T, Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300:445

    Article  CAS  Google Scholar 

  2. Socolich M, Lockless SW, Russ WP, Lee H, Gardner KH, Ranganathan R (2005) Evolutionary information for specifying a protein fold. Nature 437:512–518

    Article  CAS  Google Scholar 

  3. Russ WP, Lowery DM, Mishra P, Yaffe MB, Ranganathan R (2005) Natural-like function in artificial WW domains. Nature 437:579–583

    Article  CAS  Google Scholar 

  4. Grigoryan G, Reinke AW, Keating AE (2009) Design of protein-interaction specificity gives selective bZIP-binding peptides. Nature 458:859–864

    Article  CAS  Google Scholar 

  5. Tonikian R, Xin X, Toret CP, Gfeller D, Landgraf C, Panni S, Paoluzi S, Castagnoli L, Currell B, Seshagiri S, Yu H, Winsor B, Vidal M, Gerstein MB, Bader GD, Volkmer R, Cesareni G, Drubin DG, Kim PM, Sidhu SS, Boone C (2009) Bayesian modeling of the yeast SH3 domain interactome predicts spatiotemporal dynamics of endocytosis proteins. PLoS Biol 7:e1000218

    Article  Google Scholar 

  6. Spaller MR (2006) Act globally, think locally: systems biology addresses the PDZ domain. ACS Chem Biol 1:207–210

    Article  CAS  Google Scholar 

  7. Ponting CP (1997) Evidence for PDZ domains in bacteria, yeast, and plants. Protein Sci 6:464–468

    Article  CAS  Google Scholar 

  8. Saro D, Li T, Rupasinghe C, Paredes A, Caspers N, Spaller MR (2007) A thermodynamic ligand binding study of the third PDZ domain (PDZ3) from the mammalian neuronal protein PSD-95. Biochemistry 46:6340–6352

    Article  CAS  Google Scholar 

  9. Fuentes EJ, Gilmore SA, Mauldin RV, Lee AL (2006) Evaluation of energetic and dynamic coupling networks in a PDZ domain protein. J Mol Biol 364:337–351

    Article  CAS  Google Scholar 

  10. Ernst A, Sazinsky SL, Hui S, Currell B, Dharsee M, Seshagiri S, Bader GD, Sidhu SS (2009) Rapid evolution of functional complexity in a domain family. Sci Signal 2:ra50

    Google Scholar 

  11. Tonikian R, Zhang Y, Sazinsky SL, Currell B, Yeh J-H, Reva B, Held HA, Appleton BA, Evangelista M, Wu Y, Xin X, Chan AC, Seshagiri S, Lasky LA, Sander C, Boone C, Bader GD, Sidhu SS (2008) A specificity map for the PDZ domain family. PLoS Biol 6:e239

    Article  Google Scholar 

  12. Reina J, Lacroix E, Hobson SD, Fernandez-Ballester G, Rybin V, Schwab MS, Serrano L, Gonzalez C (2002) Computer-aided design of a PDZ domain to recognize new target sequences. Nat Struct Biol 9:621–627

    CAS  Google Scholar 

  13. Smith CA, Shi CA, Chroust MK, Bliska TE, Kelly MJS, Jacobson MP, Kortemme T (2013) Design of a phosphorylatable PDZ domain with peptide-specific affinity changes. Structure 21:54–64

    Article  CAS  Google Scholar 

  14. Thorsen TS, Madsen KL, Rebola N, Rathje M, Anggono V, Bach A, Moreira IS, Stuhr-Hansen N, Dyhring T, Peters D, Beuming T, Huganir R, Weinstein H, Mulle C, Strømgaard K, Rønn LCB, Gether U (2010) Identification of a small-molecule inhibitor of the PICK1 PDZ domain that inhibits hippocampal LTP and LTD. Proc Natl Acad Sci USA 107:413–418

    Article  CAS  Google Scholar 

  15. Bach A, Clausen BH, Møller M, Vestergaard B, Chi CN, Round A, Sørensen PL, Nissen KB, Kastrup JS, Gajhede M, Jemth P, Kristensen AS, Lundström P, Lambertsen KL, Strømgaard K (2012) A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage. Proc Natl Acad Sci USA 109:3317–3322

    Article  CAS  Google Scholar 

  16. Doyle DA, Lee A, Lewis J, Kim E, Sheng M, MacKinnon R (1996) Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 85:1067–1076

    Article  CAS  Google Scholar 

  17. Basdevant N, Weinstein H, Ceruso M (2006) Thermodynamic basis for promiscuity and selectivity in protein–protein interactions: PDZ domains, a case study. J Am Chem Soc 128:12766–12777

    Article  CAS  Google Scholar 

  18. Beuming T, Farid R, Sherman W (2009) High-energy water sites determine peptide binding affinity and specificity of PDZ domains. Protein Sci 18:1609–1619

    Article  CAS  Google Scholar 

  19. Nourry C, Grant SGN, Borg J-P (2003) PDZ domain proteins: plug and play! Sci STKE 2003:RE7

  20. Chen JR, Chang BH, Allen JE, Stiffler MA, MacBeath G (2008) Predicting PDZ domain–peptide interactions from primary sequences. Nat Biotechnol 26:1041–1045

    Article  CAS  Google Scholar 

  21. Schillinger C, Boisguerin P, Krause G (2009) Domain interaction footprint: a multi-classification approach to predict domain–peptide interactions. Bioinformatics 25:1632–1639

    Article  CAS  Google Scholar 

  22. Zaslavsky E, Bradley P, Yanover C (2010) Inferring PDZ domain multi-mutant binding preferences from single-mutant data. PLoS One 5:e12787

    Article  Google Scholar 

  23. Gerek ZN, Keskin O, Ozkan SB (2009) Identification of specificity and promiscuity of PDZ domain interactions through their dynamic behavior. Proteins 77:796–811

    Article  CAS  Google Scholar 

  24. Tian F, Lv Y, Zhou P, Yang L (2011) Characterization of PDZ domain–peptide interactions using an integrated protocol of QM/MM, PB/SA, and CFEA analyses. J Comput Aided Mol Des 25:947–958

    Article  CAS  Google Scholar 

  25. Kaufmann KW, Lemmon GH, Deluca SL, Sheehan JH, Meiler J (2010) Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry 49:2987–2998

    Article  CAS  Google Scholar 

  26. Smith CA, Kortemme T (2010) Structure-based prediction of the peptide sequence space recognized by natural and synthetic PDZ domains. J Mol Biol 402:460–474

    Article  CAS  Google Scholar 

  27. King CA, Bradley P (2010) Structure-based prediction of protein–peptide specificity in Rosetta. Proteins 78:3437–3449

    Article  CAS  Google Scholar 

  28. Kaufmann K, Shen N, Mizoue L, Meiler J (2011) A physical model for PDZ-domain/peptide interactions. J Mol Model 17:315–324

    Article  CAS  Google Scholar 

  29. Raveh B, London N, Schueler-Furman O (2010) Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins 78:2029–2040

    CAS  Google Scholar 

  30. Fleishman SJ, Leaver-Fay A, Corn JE, Strauch E-M, Khare SD, Koga N, Ashworth J, Murphy P, Richter F, Lemmon G, Meiler J, Baker D (2011) RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite. PLoS One 6:e20161

    Article  CAS  Google Scholar 

  31. Dong E, Smith J, Heinze S, Alexander N, Meiler J (2008) BCL:align-sequence alignment and fold recognition with a custom scoring function online. Gene 422:41–46

    Article  CAS  Google Scholar 

  32. Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  Google Scholar 

  33. Lazaridis T, Karplus M (1999) Effective energy function for proteins in solution. Proteins 35:133–152

    Article  CAS  Google Scholar 

  34. Kortemme T, Morozov AV, Baker D (2003) An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein–protein complexes. J Mol Biol 326:1239–1259

    Article  CAS  Google Scholar 

  35. Kortemme T, Baker D (2002) A simple physical model for binding energy hot spots in protein–protein complexes. Proc Natl Acad Sci USA 99:14116–14121

    Article  CAS  Google Scholar 

  36. Dunbrack RL, Karplus M (1993) Backbone-dependent rotamer library for proteins. Application to side-chain prediction. J Mol Biol 230:543–574

    Article  CAS  Google Scholar 

  37. Wang L, Piserchio A, Mierke DF (2005) Structural characterization of the intermolecular interactions of synapse-associated protein-97 with the NR2B subunit of N-methyl-D-aspartate receptors. J Biol Chem 280:26992–26996

    Article  CAS  Google Scholar 

  38. Sharma SC, Rupasinghe CN, Parisien RB, Spaller MR (2007) Design, synthesis, and evaluation of linear and cyclic peptide ligands for PDZ10 of the multi-PDZ domain protein MUPP1. Biochemistry 46:12709–12720

    Article  CAS  Google Scholar 

  39. Gianni S, Haq SR, Montemiglio LC, Jürgens MC, Engström Å, Chi CN, Brunori M, Jemth P (2011) Sequence-specific long range networks in PSD-95/discs large/ZO-1 (PDZ) domains tune their binding selectivity. J Biol Chem 286:27167–27175

    Article  CAS  Google Scholar 

  40. Wiedemann U, Boisguerin P, Leben R, Leitner D, Krause G, Moelling K, Volkmer-Engert R, Oschkinat H (2004) Quantification of PDZ domain specificity, prediction of ligand affinity and rational design of super-binding peptides. J Mol Biol 343:703–718

    Article  CAS  Google Scholar 

  41. Harris BZ, Hillier BJ, Lim WA (2001) Energetic determinants of internal motif recognition by PDZ domains. Biochemistry 40:5921–5930

    Article  CAS  Google Scholar 

  42. Smith CA, Kortemme T (2008) Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction. J Mol Biol 380:742–756

    Article  CAS  Google Scholar 

  43. Shao X, Tan CS, Voss C, Li SS, Deng N, Bader GD (2011) A regression framework incorporating quantitative and negative interaction data improves quantitative prediction of PDZ domain–peptide interaction from primary sequence. Bioinformatics 27:383–390

    Article  CAS  Google Scholar 

  44. Petit CM, Zhang J, Sapienza PJ, Fuentes EJ, Lee AL (2009) Hidden dynamic allostery in a PDZ domain. Proc Natl Acad Sci USA 106:18249–18254

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Nils Woetzel for reconfiguring the BioChemistry Library Monte Carlo minimizer for this work and Jordan Willis and Sarel Fleishman for help with RosettaScripts protocol development. Additionally, we thank the entire Meiler Lab and Rosetta community for insightful feedback on this project. In particular, we are grateful to Tanja Kortemme, Colin Smith, Ora Schueler-Furman, and Nir London for useful discussion. Work in the Meiler Lab is supported through NIH (R01 GM080403, R01 MH090192, R01 GM099842) and NSF (Career 0742762). J.J.C. received support through the Beckman Scholars Program of the Arnold and Mabel Beckman Foundation.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Meiler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3391 kb)

Supplementary material 2 (PDF 111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crivelli, J.J., Lemmon, G., Kaufmann, K.W. et al. Simultaneous prediction of binding free energy and specificity for PDZ domain–peptide interactions. J Comput Aided Mol Des 27, 1051–1065 (2013). https://doi.org/10.1007/s10822-013-9696-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-013-9696-9

Keywords

Navigation