Skip to main content
Log in

Sialyldisaccharide conformations: a molecular dynamics perspective

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Sialyldisaccharides are significant terminal components of glycoconjugates and their negative charge and conformation are extensively utilized in molecular recognition processes. The conformation and flexibility of four biologically important sialyldisaccharides [Neu5Acα(2-3)Gal, Neu5Acα(2-6)Gal, Neu5Acα(2-8)Neu5Ac and Neu5Acα(2-9)Neu5Ac] are studied using Molecular Dynamics simulations of 20 ns duration to deduce the conformational preferences of the sialyldisaccharides and the interactions which stabilize the conformations. This study clearly describes the possible conformational models of sialyldisaccharides deduced from 20 ns Molecular Dynamics simulations and our results confirm the role of water in the structural stabilization of sialyldisaccharides. An extensive analysis on the sialyldisaccharide structures available in PDB also confirms the conformational regions found by experiments are detected in MD simulations of 20 ns duration. The three dimensional structural coordinates for all the MD derived sialyldisaccharide conformations are deposited in the 3DSDSCAR database and these conformational models will be useful for glycobiologists and biotechnologists to understand the biological functions of sialic acid containing glycoconjugates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Paulson JC (1989) Trends Biochem Sci 14:272–276

    Article  CAS  Google Scholar 

  2. Varki A (1993) Glycobiology 3:97–130

    Article  CAS  Google Scholar 

  3. Karlsson KA (1995) Curr Opin Struct Biol 5:622–635

    Article  CAS  Google Scholar 

  4. Denarie J, Debelle F, Prome JC (1996) Annu Rev Biochem 65:503–535

    Article  CAS  Google Scholar 

  5. Dwek RA (1996) Chem Rev 96:683–720

    Article  CAS  Google Scholar 

  6. Gahmberg CG, Tolvanen M (1996) Trends Biochem Sci 21:308–311

    CAS  Google Scholar 

  7. Sharon N, Weis W (1998) Curr Opin Struct Biol 8:545–547

    Article  CAS  Google Scholar 

  8. Muramatsu T (2000) Glycoconj J 17:577–595

    Article  CAS  Google Scholar 

  9. Yamashita K, Fukushima K (2004) Glycoconj J 21:31–34

    Article  CAS  Google Scholar 

  10. Zhao YY, Takahashi M, Jian-Guo G, Miyoshi E, Matsumoto A, Kitazumae S, Taniguchi N (2008) Cancer Sci 99:1304–1310

    Google Scholar 

  11. Dnistrian AM, Schwartz MK, Katopodis N, Fracchia AA, Stock CC (2006) Cancer 50:1815–1819

    Article  Google Scholar 

  12. Olofsson S, Bergstrom T (2005) Ann Med 37:154–172

    Article  CAS  Google Scholar 

  13. Schauer R, Kamerling JP (1997) In Montreuil J, Vliegenthart JFG, Schachter H (eds) Glycoproteins II. Elsevier, Amsterdam

  14. Brocca P, Bernardi A, Raimondi L, Sonnino S (2000) Glycoconj J 17:283–299

    Article  CAS  Google Scholar 

  15. Schauer R (2004) Zoology 107:49–64

    Article  CAS  Google Scholar 

  16. Hedlund M, Ng E, Varki A, Varki NM (2008) Cancer Res 68:388–394

    Article  CAS  Google Scholar 

  17. Yasukawa Z, Sato C, Kitajima K (2005) Glycobiology 15:237–827

    Article  Google Scholar 

  18. Stuart A, Brown DK (2007) J Gen Virol 88:177–186

    Article  CAS  Google Scholar 

  19. Mahal LK, Charter NW, Angata K, Fukuda M, Koshland DE Jr, Bertozzi CR (2001) Science 294:380–382

    Article  CAS  Google Scholar 

  20. Gagneux P, Cheriyan M, Hurtado-Ziola N, Brinkman van der Linden ECM, Anderson D, McClure H, Varki A, Varki NM (2003) J Biol Chem 278:48245–48250

    Article  CAS  Google Scholar 

  21. Shah SH, Telang SD, Shah PM, Patel PS (2008) Glycoconj J 25:279–290

    Article  CAS  Google Scholar 

  22. Schwardt O, Gathje H, Vedani A, Mesch S, Gao GP, Spreafico M, von Orelli J, Kelm S, Ernst B (2009) J Med Chem 52:989–1004

    Article  CAS  Google Scholar 

  23. Varki A (1997) FASEB J 11:248–255

    CAS  Google Scholar 

  24. Ulloa F, Real FX (2001) J Histochem Cytochem 49:501–509

    Article  CAS  Google Scholar 

  25. Nam HJ, Gurda-Whitaker B, Gan WY, Ilaria S, McKenna R, Mehta P, Alvarez RA, Agbandje-McKenna M (2006) J Biol Chem 281:25670–25677

    Article  CAS  Google Scholar 

  26. Muhlenhoff M, Eckhardt M, Gerardy-Schahn R (1998) Curr Opin Struct Biol 8:558–564

    Article  CAS  Google Scholar 

  27. Woods RJ (1995) Curr Opin Struct Biol 5:591–598

    Article  CAS  Google Scholar 

  28. Perez S, Kouwijzer M, Mazeau K, Engelsen SB (1996) J Mol Graph 14:307–321

    Article  CAS  Google Scholar 

  29. Imberty A (1997) Curr Opin Struct Biol 7:617–623

    Article  CAS  Google Scholar 

  30. Karplus M, McCammon A (2002) Nat Struct Biol 9:646–652

    Article  CAS  Google Scholar 

  31. Imberty A, Perez S (2000) Chem Rev 100:4567–4588

    Article  CAS  Google Scholar 

  32. Momany FA, Willet JL (2000) Carbohydr Res 326:194–209

    Article  CAS  Google Scholar 

  33. Momany FA, Willet JL (2000) Carbohydr Res 326:210–226

    Article  CAS  Google Scholar 

  34. Kolgelberg H, Rutherford TJ (1994) Glycobiology 4:49–57

    Article  Google Scholar 

  35. Kony DB, Damm W, Stoll S, van Gunsteren WF, Hunnenberger PH (2007) Biophys J 93:442–455

    Article  CAS  Google Scholar 

  36. Suresh MX, Veluraja K (2003) J Theor Biol 222:389–402

    Article  Google Scholar 

  37. Margulis CJ, Veluraja K (2005) J Biomol Struct Dyn 23:101–111

    Google Scholar 

  38. Arnott S, Scott WE (1972) J Chem Soc Perkin Trans I(2):324–335

    Google Scholar 

  39. Flippen JL (1973) Acta Crystallogr Sect B B29:1881–1886

    Article  Google Scholar 

  40. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9. University of California, San Francisco

  41. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  42. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  43. Veluraja K, Rao VSR (1983) Carbohydr Polym 3:175–192

    Article  CAS  Google Scholar 

  44. Kraulis PJ (1992) J Appl Crystallogr 24:946–950

    Article  Google Scholar 

  45. Vasudevan SV, Balaji PV (2002) Biopolymers 63:168–180

    Article  CAS  Google Scholar 

  46. Wright CS (1990) J Mol Biol 215:635–651

    Article  CAS  Google Scholar 

  47. Ban M, Yoon HJ, Demirkan E, Utsumi S, Mikami B, Yagi F (2005) J Mol Biol 351:695–706

    Article  CAS  Google Scholar 

  48. Gaulska SP, Geyer H, Bleckmann C, Rohrich RC, Maass K, Bergfeld AK, Muhlenhoff M, Geyer R (2010) Anal Chem 82:2059–2066

    Article  Google Scholar 

  49. Cheng M, Lin C, Lin H, Yu Y, Wu S (2004) Glycobiology 14:147–155

    Article  CAS  Google Scholar 

  50. Azurmendi HF, Vionnet J, Wrightson L, Trinh LB, Shiloach J, Freedberg DI (2007) Proc Natl Acad Sci 104:11557–11561

    Article  CAS  Google Scholar 

  51. Inoue Y, Inoue S (1999) Pure Appl Chem 71:789–800

    Article  CAS  Google Scholar 

  52. Gregoriadis G, Fernandes A, Mital M, McCormack B (2000) Cell Mol Life Sci 57:1964–1969

    Article  CAS  Google Scholar 

  53. Baumann H, Brisson J, Michon F, Pon R, Jennings HJ (1993) Biochemistry 32:4007–4013

    Article  CAS  Google Scholar 

Download references

Acknowledgments

JFAS and TRKP acknowledge the Junior Research Fellowship from the Department of Science and Technology (SR/S0/BB-53/2003) and the Department of Biotechnology (BT/PR4251/BID/07/068/2003). JFAS, TRKP and KV acknowledge the use of Bioinformatics Centre in the Department of Physics, Manonmaniam Sundaranar University (BT/BI/25/001/2006) funded by DBT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasinadar Veluraja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvin, J.F.A., Priyadarzini, T.R.K. & Veluraja, K. Sialyldisaccharide conformations: a molecular dynamics perspective. J Comput Aided Mol Des 26, 375–385 (2012). https://doi.org/10.1007/s10822-012-9563-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-012-9563-0

Keywords

Navigation